• English
  • Sitemap
  •  
Home
‹’“_ŠT—v
  • ‹’“_ƒŠ[ƒ_[ˆ¥ŽA
  • ‹’“_Œ`¬‚Ì–Ú“I
  • “sŽs’nkHŠwƒZƒ“ƒ^[
  • Ž––±‹Ç
‹³ˆç
  • “sŽs’nkHŠw‚ðŽu–]‚·‚éŠw¶‚ÌŠF‚³‚ñ‚Ö
  • lވ笌v‰æ
  • “sŽs’nkHŠw‘ÛƒR[ƒX‹³ˆçƒvƒƒOƒ‰ƒ€
  • ‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€
  • ŽáŽèˆç¬ƒvƒƒOƒ‰ƒ€ŠT—v
  • ŠO‘lµãÙŽÒu‹`
  • ŠCŠOŒ¤C•ñ
Œ¤‹†
  • Œ¤‹†Šˆ“®Œv‰æ
  • Œ¤‹†¬‰Ê
  • ŽóÜ
  • Œ¤‹†Ž{Ý
˜AŒg
  • ‘Û˜AŒg
  • ‘“à˜AŒg
ƒƒ“ƒo[
  • Ž–‹Æ„i’S“–ŽÒ
  • Ž–‹Æ„i‹¦—ÍŽÒ
  • PD
  • RA,TA
  • Ž––±‹Çƒƒ“ƒo[
  • ƒvƒƒtƒB[ƒ‹
Œö•å
  • ‹³EˆõEPD
  • Šw“à•åW
  • ‰ß‹Ž‚ÌŒö•å
    • •½¬24”N“x
    • •½¬23”N“x
    • •½¬22”N“x
    • •½¬21”N“x
    • •½¬20”N“x
ƒjƒ…[ƒX
µ•¨
  • ‘Û‰ï‹c
  • ‘“àƒVƒ“ƒ|
  • ƒ[ƒNƒVƒ‡ƒbƒv
  • ƒZƒ~ƒi[
  • ’k˜b‰ï
  • ŽáŽè‚̉ï
  • InterCOE
o”Å•¨
  • ƒjƒ…[ƒYƒŒƒ^[
  • ‘Û‰ï‹c˜_•¶W
  • ‘“àƒVƒ“ƒ|˜_•¶W
  • Œ¤‹†ƒŒƒ|[ƒg
ƒŠƒ“ƒN

‘Û‰ï‹c
“Œ–k’n•û‘¾•½—m‰«’nk‚ÉŠÖ‚·‚éî•ñ

‹³ˆç

Home > ‹³ˆç > ‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€i•½¬21”N“xj > Introduction to Solid Mechanics

‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€

Name of Lecture

Introduction to Solid Mechanics
Semester Spring Semester
Credits 2-0-0
Opening year Every Year
Lecturer Assoc. Prof. Anil C. WIJEYEWICKREMA

Syllabus

[Aims]
The course is designed for the students to attain the following four objectives:
(1)   Understand index notation used in equations in any subject area.
(2)   Understand the fundamentals of stresses and strains.
(3)   Obtain a good knowledge of linear elasticity.
(4)   To be able to formulate and solve basic problems in solid mechanics.
[Outline]
  1. Mathematical preliminaries -- Index notation
  2. Mathematical preliminaries -- Vectors and Cartesian tensors
  3. Mathematical preliminaries - Eigen-value problems, vector and tensor calculus
  4. Stress and strain - Stresses, traction and equilibrium equations
  5. Stress and strain - Principal stress and maximum shear stress
  6. Stress and strain - Strain tensor
  7. Stress and strain - Cylindrical polar coordinates
  8. Stress and strain - Spherical coordinates
  9. Linear elasticity? Hooke’s law
  10. Linear elasticity? Introduction to anisotropic elasticity
  11. Elastostatic plane problems - Classification of two-dimensional elasticity problems
  12. Elastostatic plane problems - Airy stress functions
  13. Elastostatic plane problems - Infinite plate problem and Kirsch solution
  14. Elastostatic plane problems - Infinite plane with a uniform body force in a circular region
  15. Elastostatic plane problems - Hertz solution
[Evaluation]
Homework - 20%, Quizzes - 20% and Final exam - 60%
[Texts]
Timoshenko, S. P. and Goodier, J. N., 1970, “Theory of Elasticity”, 3rd edition, Mc-Graw-Hill, New York / Barber, J. R., 2002, “Elasticity”, 2nd edition, Kluwer, Dordrecht.
[Prerequisites]
None
ƒJƒŠƒLƒ…ƒ‰ƒ€ˆê——‚Ö–ß‚é@@ƒy[ƒWƒgƒbƒv‚Ö