• English
  • Sitemap
  •  
Home
‹’“_ŠT—v
  • ‹’“_ƒŠ[ƒ_[ˆ¥ŽA
  • ‹’“_Œ`¬‚Ì–Ú“I
  • “sŽs’nkHŠwƒZƒ“ƒ^[
  • Ž––±‹Ç
‹³ˆç
  • “sŽs’nkHŠw‚ðŽu–]‚·‚éŠw¶‚ÌŠF‚³‚ñ‚Ö
  • lވ笌v‰æ
  • “sŽs’nkHŠw‘ÛƒR[ƒX‹³ˆçƒvƒƒOƒ‰ƒ€
  • ‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€
  • ŽáŽèˆç¬ƒvƒƒOƒ‰ƒ€ŠT—v
  • ŠO‘lµãÙŽÒu‹`
  • ŠCŠOŒ¤C•ñ
Œ¤‹†
  • Œ¤‹†Šˆ“®Œv‰æ
  • Œ¤‹†¬‰Ê
  • ŽóÜ
  • Œ¤‹†Ž{Ý
˜AŒg
  • ‘Û˜AŒg
  • ‘“à˜AŒg
ƒƒ“ƒo[
  • Ž–‹Æ„i’S“–ŽÒ
  • Ž–‹Æ„i‹¦—ÍŽÒ
  • PD
  • RA,TA
  • Ž––±‹Çƒƒ“ƒo[
  • ƒvƒƒtƒB[ƒ‹
Œö•å
  • ‹³EˆõEPD
  • Šw“à•åW
  • ‰ß‹Ž‚ÌŒö•å
    • •½¬24”N“x
    • •½¬23”N“x
    • •½¬22”N“x
    • •½¬21”N“x
    • •½¬20”N“x
ƒjƒ…[ƒX
µ•¨
  • ‘Û‰ï‹c
  • ‘“àƒVƒ“ƒ|
  • ƒ[ƒNƒVƒ‡ƒbƒv
  • ƒZƒ~ƒi[
  • ’k˜b‰ï
  • ŽáŽè‚̉ï
  • InterCOE
o”Å•¨
  • ƒjƒ…[ƒYƒŒƒ^[
  • ‘Û‰ï‹c˜_•¶W
  • ‘“àƒVƒ“ƒ|˜_•¶W
  • Œ¤‹†ƒŒƒ|[ƒg
ƒŠƒ“ƒN

‘Û‰ï‹c
“Œ–k’n•û‘¾•½—m‰«’nk‚ÉŠÖ‚·‚éî•ñ

‹³ˆç

Home > ‹³ˆç > ‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€i•½¬21”N“xj > Advanced Course on Elasticity Theory

‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€

Name of Lecture

Advanced Course on Elasticity Theory
Semester Autumn Semester
Credits 2-0-0
Opening year Every Year
Lecturer Assoc. Prof. Anil C. WIJEYEWICKREMA

Syllabus

[Aims and Scope]
Non-linear elastic behavior is studied in detail. Anisotropic elasticity will also be introduced.
[Outline]
  1. Finite Elastic Deformations -- Mathematical preliminaries (Cartesian tensors)
  2. Finite Elastic Deformations -- Mathematical preliminaries (Tensor algebra)
  3. Finite Elastic Deformations -- Kinematics (Configurations and motions)
  4. Finite Elastic Deformations -- Kinematics (Deformation gradient and deformation of volume and surface elements)
  5. Finite Elastic Deformations -- Kinematics (Strain, stretch, extension and shear)
  6. Finite Elastic Deformations -- Kinematics (Geometrical interpretation of the deformation)
  7. Analysis of motion -- Deformation and strain rates
  8. Balance laws
  9. Stress tensors -- Cauchy stress tensor
  10. Stress tensors -- Nominal stress tensor
  11. Conjugate stress analysis
  12. Constitutive laws
  13. Anisotropic Elasticity -- Linear anisotropic elasticity
  14. Anisotropic Elasticity -- Lekhnitskii formalism
  15. Anisotropic Elasticity -- Stroh formalism
[Evaluation]
Home Work Assignments and Examination
[Texts]
Holzapfel, G. A., 2001, “Nonlinear solid mechanics”, John Wiley, Chichester.
Ogden, R. W., 1984, “Non-linear elastic deformations”, Ellis Horwood, Chichester, also published by Dover publications, New York in 1997. Ting, T. C. T., 1996, “Anisotropic elasticity”, Oxford University Press, New York.
[Prerequisites]
Students should have previously followed a course on Fundamentals of Elasticity or Introduction to Solid Mechanics.
ƒJƒŠƒLƒ…ƒ‰ƒ€ˆê——‚Ö–ß‚é@@ƒy[ƒWƒgƒbƒv‚Ö