• English
  • Sitemap
  •  
Home
‹’“_ŠT—v
  • ‹’“_ƒŠ[ƒ_[ˆ¥ŽA
  • ‹’“_Œ`¬‚Ì–Ú“I
  • “sŽs’nkHŠwƒZƒ“ƒ^[
  • Ž––±‹Ç
‹³ˆç
  • “sŽs’nkHŠw‚ðŽu–]‚·‚éŠw¶‚ÌŠF‚³‚ñ‚Ö
  • lވ笌v‰æ
  • “sŽs’nkHŠw‘ÛƒR[ƒX‹³ˆçƒvƒƒOƒ‰ƒ€
  • ‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€
  • ŽáŽèˆç¬ƒvƒƒOƒ‰ƒ€ŠT—v
  • ŠO‘lµãÙŽÒu‹`
  • ŠCŠOŒ¤C•ñ
Œ¤‹†
  • Œ¤‹†Šˆ“®Œv‰æ
  • Œ¤‹†¬‰Ê
  • ŽóÜ
  • Œ¤‹†Ž{Ý
˜AŒg
  • ‘Û˜AŒg
  • ‘“à˜AŒg
ƒƒ“ƒo[
  • Ž–‹Æ„i’S“–ŽÒ
  • Ž–‹Æ„i‹¦—ÍŽÒ
  • PD
  • RA,TA
  • Ž––±‹Çƒƒ“ƒo[
  • ƒvƒƒtƒB[ƒ‹
Œö•å
  • ‹³EˆõEPD
  • Šw“à•åW
  • ‰ß‹Ž‚ÌŒö•å
    • •½¬24”N“x
    • •½¬23”N“x
    • •½¬22”N“x
    • •½¬21”N“x
    • •½¬20”N“x
ƒjƒ…[ƒX
µ•¨
  • ‘Û‰ï‹c
  • ‘“àƒVƒ“ƒ|
  • ƒ[ƒNƒVƒ‡ƒbƒv
  • ƒZƒ~ƒi[
  • ’k˜b‰ï
  • ŽáŽè‚̉ï
  • InterCOE
o”Å•¨
  • ƒjƒ…[ƒYƒŒƒ^[
  • ‘Û‰ï‹c˜_•¶W
  • ‘“àƒVƒ“ƒ|˜_•¶W
  • Œ¤‹†ƒŒƒ|[ƒg
ƒŠƒ“ƒN

‘Û‰ï‹c
“Œ–k’n•û‘¾•½—m‰«’nk‚ÉŠÖ‚·‚éî•ñ

‹³ˆç

Home > ‹³ˆç > ‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€i•½¬21”N“xj > Advanced Mathematical Methods for Infrastructure and Transportation Planning

‘åŠw‰@ƒJƒŠƒLƒ…ƒ‰ƒ€

Name of Lecture

Advanced Mathematical Methods for Infrastructure and Transportation Planning
Semester Spring Semester
Credits 2-0-0
Opening year Odd Years
Lecturer Assoc. Prof. Daisuke FUKUDA

Syllabus

[Aims and Scope]
Mathematical methodologies for infrastructure, transportation and city planning will be lectured. These include: (1) Advanced statistical techniques for transportation data analysis, (2) Econometric methods for travel demand forecasting, and (3) Mathematical optimization techniques for project evaluation.
[Outline]
  1. Introduction
  2. Overview of Systems Analysis
  3. Fundamentals of Mathematical Optimization Problem
    (Optimization with equality constraints)
  4. Advanced Topics of Mathematical Optimization Problem
    (Optimization with inequality constraints and Dynamic programming)
  5. Fundamentals of Statistical Regression Analysis
    (Multiple regression analysis)
  6. Advanced Topics of Statistical Regression Analysis
    (Simultaneous equation system, Time-series analysis)
  7. Fundamentals of Discrete Choice Model
    (Derivation and Estimation of Logit Model)
  8. Advanced Topics of Discrete Choice Model
    (Demand Forecasting, Extended Discrete Choice Models)
[Evaluation]
Attendance, Home Work Assignments and Examination
[Text]
Lecture materials will be provided by the lecturer.
ƒJƒŠƒLƒ…ƒ‰ƒ€ˆê——‚Ö–ß‚é@@ƒy[ƒWƒgƒbƒv‚Ö