〇目黒 公郎¹⁾,藤枝 拓海²⁾

1) 東京大学 生産技術研究所, meguro@iis.u-tokyo.ac.jp
2) 中央大学大学院 理工学研究科 土木工学専攻, fujieda@risk-mg.iis.u-tokyo.ac.jp

1. はじめに

焼成レンガや日干しレンガ(アドベ),石やブ ロックなどを積み上げて造る組積造は長い歴史 をもった構造形式であり,現在でも世界各地で利 用されている.地震の多発する地域にも広く分布 し,世界の人口の約 6 割もの人口が住んでいる. 組積造は地震に弱く,世界の地震による犠牲者の 多くは,組積造建物の崩壊によって発生している. 組積造建物の耐震補強は世界規模で地震防災を 考えた場合に最も重要な課題と言える.

このような状況を踏まえ,目黒らは世界中で手 に入る安価な材料 (PP バンド荷造紐)を用いた簡 単な耐震補強法とその普及策を提案している.そ して,これまでに縮小と実大模型を用いた振動台 実験^{1),2)}を行い,補強効果を検証している.しか し,組積造は多種多様であり未検証な点も少なく ないため,様々なパターンの挙動を容易に検証で きるツールの構築が求められている.そこで本研 究では,そのツールとして,ミニチュア模型と小 型振動台を用いた組積造建物の耐震補強効果を 簡便に検証する実験システムと地震時の挙動を 精度良く再現する数値解析手法の構築を行った.

2. PP バンド荷造紐を用いた耐震補強法

本研究で扱う耐震補強法は、通常は荷造り紐と して利用されている PP バンドを用いる工法であ る. PP バンドは安価で軽く, 引張強度が非常に高 い材料で、世界中のどこでも一定の品質のものが 入手できる. このバンドをメッシュ状にして,壁 や屋根を両側から挟み込み、両者を紐や針金など で連結し、アドベや石、レンガなどが地震時に壁 から崩落する事を防いで建物の一体性を保持す るものである.無補強の壁はクラック発生直後に 面内・面外共に耐力を失うが、PP バンド補強壁で は、クラックの発生直後に耐力が一瞬低下するが、 PP バンドメッシュの効果ですぐに耐力は回復し、 強度が向上すると共に変形能も大きくなる.縮 小・実大模型の実験から、補強なしのケースに比 べ、PP バンド補強では遥かに大きな加振にも耐え る事が確認されている.

3. 実験システムの構築

3.1 供試体の概要

実験供試体として、木造屋根とアーチ屋根の2 パターンの組積造建物(いずれも実物の1/12スケ ール)を用意した.レンガの代用物としてはアク リル製のブロックを, モルタルの代用物としては, 砂と炭酸カルシウムと水を重量比20:5:6で混ぜ合 わせたものを使用した. これらの選定理由は、繰 り返し再利用が可能なこと,材料特性が実際の材 料と似ているためである. モルタルの配合は製作 した小型振動台で得られる加振力の範囲内で供 試体が壊れ、破壊過程が実際の組積造と一致する ものを試行錯誤的に求めた. 一連の実験を行う前 に,これらの材料を使用した場合に,組積造のク ラックが進展していく様子が再現できる事を確 認した.本研究で用いる PP バンドメッシュは, 供試体サイズを考慮して市販の PP バンドを細か く加工(幅 0.75mm,厚さ 0.3mm)して、メッシ ュピッチが 20mm になるように作成した. 交差部 は高周波振動による摩擦熱で溶接する方法で接 合した. タイバーは引張も圧縮も持つ金属材料 (真鍮) とした.

3.2 電動式小型振動台による起振方法

本研究では、既存の手動式小型振動台に改良を 加え、持ち運び可能な小型の電動式振動台を製作 した.改良ポイントとしては、電動で稼働し、周 波数の制御と測定が可能で、供試体を載せる台が 変更できる点である.入力波としては、1 方向加 振で、振幅を 5mm 又は 15mm の一定とし、周波 数を 2Hz から 6Hz まで、10 秒間で 1Hz 上昇させ、 その後 10 秒間保持する状態を繰り返す波を用い る.

図-1 実験供試体

3.3 実験結果と考察

まず検証①として、木造屋根組積造の無補強, PPバンド補強の2つのパターンを比較し、PPバンド 耐震補強の効果を検証する.次に検証②として、 木造屋根の重さによる組積造への影響を検証する ため、木造屋根なしの組積造(box)、木造屋根あ りの組積造、木造屋根に錘を載せた組積造の3パタ ーンの挙動を比較する.最後に検証③として、ア ーチ組積造の無補強、タイバー補強、PPバンド+ タイバー補強の3つのパターンの挙動を比較する.

検証①の結果としては、無補強のものは気象庁 震度階(JMAI)5-で崩壊したが、PPバンド補強された ものはJMAI6-でも崩壊しなかった.次に、この組 積造がレンガで造られていると仮定し、その重さ に相当する錘を屋根に載せた上で繰り返し載荷実 験を行った.結果は、最終的に横倒しになるもの の一体性を保持するため, 甚大な人的被害を発生 させる脆性崩壊はしなかった.検証②の結果とし ては、屋根なし無補強(box)と木造屋根無補強のも のを比較すると、ほぼ同じ地震外力で破壊した. この実験結果からは、木造屋根の重さによる顕著 な拘束効果は見られなかった. そこで木造屋根の 重さを増加させていったところ,錘が0.5kg,1.0kg の時には影響が見られず, 2.0kgの錘を追加したと きに強度増加が確認された. さらに重くしていく と, 垂直応力の増加によるせん断強度向上の一方 で、屋根部分に作用する慣性力の影響が大きくな り、耐震性が低下した(図-2).検証③の結果と しては、無補強のものがJMAI4で崩壊し、タイバー 補強のものがJMAI5-で崩壊,そしてPPバンド+タ イバー補強は、JMAI6-でも崩壊しなかった. これ によりPPバンド+タイバー補強が効果的な耐震補 強工法であることが分かる.

4. 数値解析手法の構築

4.1 三次元応用要素法 (3D-AEM)

応用要素法³では対象構造物を矩形状の有限個 の要素に分割し、その要素同士を接線方向とせん 断方向の二種類のバネで接続する.各バネに非線 形の特性が適用され、そのバネを介して周囲の要 素と力のやり取りを行う.各要素は6自由度を持 ち、各バネの剛性行列は12×12の行列となる. 組積造はレンガとモルタルの2つの材料から構成 されるため、レンガ内部とモルタル表面の2つの タイプのバネでモデル化する.それぞれのモデル を図-4に示す.

4.2 組積造モデル

組積造の材料構成則には、Gambarotta L.⁴⁾によって提案されているモデルを適用する.このモデル

は繰り返し荷重下での組積造の複雑な非線形挙 動を少ないパラメータで合理的に表現する事が 出来るモデルである.このモデルは、モルタル自 体の損傷状況とレンガとモルタルの界面損傷状 況を考慮する事が出来き、それぞれモルタルダメ ージαと摩擦すべりγ*の2つの変数で表現する (図-5).これらの変数はモール・クーロンの摩 擦面と破壊力学に基づく **R-curve** から得られる.

3.3 PP バンドメッシュモデル

PP バンドメッシュは梁要素でモデル化した.材 料特性としては、引張側を線形弾性とし、圧縮側 は力を受け持たないものとする.要素の両端では モーメントを受け持たないモデルとなっている. 各梁要素の両端には、法線・せん断・回転方向の バネを設け、組積造の要素と接合する.PP バンド メッシュを固定する金具が存在する場合には3方 向すべてのバネで AEM 要素と接続する.存在し ない場合には PP バンドメッシュと組積造の接触 のみを考慮し、法線方向バネのみ接続する.

4. 数值解析例

Sathiparan(2005)によって行われた組積造面外 方向壁の変位載荷実験¹⁾を基に,三次元応用要素 法の精度の検証を行う.供試体寸法は 475x235x50mmでPPバンドメッシュは幅6mm, 厚さ0.32mm,ピッチ40mmとなっている.境界 条件は供試体両端のスチール棒による単純支持, 荷重条件は中央部分のスチール棒による単純支持, 荷重条件は中央部分のスチール棒による線的な 変位載荷である.数値解析には表-1に示す材料 特性を用い,PPバンドメッシュの剛性は9.375GPa とする.図-6と図-7に無補強とPPバンド補強 の実験と数値解析から得られた荷重-変位関係 を示す.実験結果と解析結果を比較すると無補強 の場合も PPバンド補強の場合も,共に良い一致 を示している.

5. 動的非線形解析手法の構築

5.1 概要

本研究では地震被害を対象としているので,地 震時の組積造構造物の挙動を詳細に把握する事 が重要となる.現在の静的解析では地震時の構造 物の挙動を把握するには限界があり,荷重条件を より正確に扱う事の出来る動的解析に拡張する 必要性がある.そのため,非線形動的解析手法の 構築を行った.

表-1 材料特性

	ヤング係数 (MPa)	せん断係数 (MPa)	引張強度 (MPa)	せん断強度 (MPa)	摩擦係数	β	Ct (MPa)
モルタル	0.5E+03	0.25E+03	0.16	0.22	0.6	0.9	30E+03
レンガ	15E+03	7.5+03	12	4.20	0.75	0.8	0.75+03
PPバンド	9.375+03	4.687+03	NA	NA	NA	NA	NA

5.2 時間積分手法

本手法の時間積分手法にはニューマークβ法 を拡張した HHT 法 (Hilber-Hughes-Taylor method) を用いる.この手法の特徴はニューマークβ法よ り効果的な数値減衰を持つ手法で、大きな時間刻 みを用いた場合に大きな数値減衰が表れ、固有周 期の短い高次モードに対してより大きな効果を 発揮する.組積造のレンガとモルタルのように構 造物に大きな剛性差がある場合に生じる高次モ ードの卓越を抑制し、安定的な数値解を得るのに 非常に有効な手法である.

5.3 数値解析手法の妥当性の評価

Sathiparan(2005)によって行われた 1/4 スケール モデルを用いた振動台実験¹⁾を基に、構築した数 値解析手法の妥当性の検証を行う.供試体の寸法 は 950x950x720mm で、PP バンドメッシュは幅 6mm,厚さ 0.24mm、メッシュピッチ 40mm であ る(図-8,9).入力波は周波数帯が 2Hz から 35Hz で、加速度は 0.05g から 1.4g に至る範囲の正弦波 の入力を段階的に行う(図-10,表-2).数値解 析には表-3 に示す材料特性を用いる.妥当性の 評価方法は、無補強・PP バンド補強共に、加振ス ケジュール表(表-2)の No. 19, 23, 27, 28 のケー スで実験と解析の加速度応答を比較し、さらに No. 29 で加速度応答,変位応答,クラックパター ンを比較する.

5.4 解析結果

無補強・PP バンド補強共に No. 19, 23, 27, 28, 29 の実験と解析の加速度応答を比較すると,応答性 状,応答値,周期に良い一致が見られた.今回は 紙面の制約から No. 29 の結果(図-12, 13)を示 す. No. 29 の変位応答(図-14, 15, 16, 17)は, こちらも応答性状,応答値,周期に良い一致が見 られる.無補強の No. 29 のクラックパターンを見 ると実験のクラックパターンと非常に類似して おり,クラックの進展を精度良く捉えられている 事が分かる(図-11). PP バンド補強のクラック パターンを見ると実験で見られる様な強度の増 加が確認でき,クラックの開口が抑制される様子 を再現出来ている(図-18).これらの結果から 構築した数値解析手法の妥当性を検証できたと 言える.

6. 結論と今後の課題

組積造建物の耐震補強の効果を簡便に検証で

きる実験システムと数値解析手法の構築を行っ

た. 今後の課題は数値解析手法の精度の向上とそ

れらを用いた設計ガイドラインの提案である.

参考文献

- Navaratnarajah Sathiparan: Experimental study of retrofit of masonry building by pp-band mesh, Master degree thesis, Department of Civil Engineering, The University of Tokyo, 2005.
- 2)K.N.Nesheli, N.Sathiparan, R.Guragain, P.Mayorca, F.Ito, H.Kagawa, T.Tsugawa and K. Meguro: Full-Scale Shaking Table Tests on Masonry Buildings Retrofitted by PP-Band Meshes. Proc. of the 5th International Symposium on New Technologies for Urban Safety of Mega Cities in Asia, 2006. 11.
- 3)Hatem Sayed Tagel-Din: A New Efficient Method for Nonlinear, Larged Deformation and Collaps Analysis of Structures, Doctor degree thesis, Department of Civil Engineering, The University of Tokyo, 2005.
- 4)Gambarotta L. and Lagomarsino S: Damage Model for the Seismic Response of Brick Masonry Shear Walls, Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 423-439, 1997.

図-8 左:実験供試体,右:解析モデル(無補強)

図-9 左:実験供試体,右:解析モデル(補強)

0.3 0.2 0.1 0.1 0.1 -0.2 -0.2	10cycles	30cycles	15Hz)	
0.5	0 0.5	¹ Time (s) ^{1.5}	2	2.5

図-10 入力波形 表-2 加振スケジュール

Amplitude	Frequency							
-	2Hz	5Hz	10Hz	15Hz	20Hz	25Hz	30Hz	35H2
1.4g		59	58	57				
1.2g		56	55	54	53			
1.0g	62	52	51	50	49			
0.8g	61	47	44	41	38	35	32	29
0.6g	60	46	43	40	37	34	31	28
0.4g	48	45	42	39	36	33	30	27
0.2g	26	25	24	23	22	21	20	19
0.1g	18	17	16	15	14	13	12	11
0.05g	10	09	08	07	06	05	04	03
sweep	01,02							

図-11 無補強クラックパターン(応答倍率:50倍) 左-実験結果,右-解析結果

図-18 補強クラックパターン(応答倍率:50倍) 左-実験結果,右-解析結果