空気注入による安価な液状化対策工法の開発に向けた基礎的研究

○竹村次朗¹⁾,小松本奈緒美²⁾,井澤 淳³⁾,関 栄⁴⁾

1)	東京工業大学	理工学研究科	土木工学専攻,	jtakemur@cv.titech.ac.jp
2)	東京工業大学	理工学研究科	土木工学専攻,	reina@cv.titech.ac.jp
3)	東京工業大学	理工学研究科	土木工学専攻,	jizawa@cv.titech.ac.jp
4)	東京工業大学	理工学研究科	土木工学専攻,	jizawa@cv.titech.ac.jp

1. はじめに

これまでの液状化対策は比較的重要な構造物に 対して行うものであった.そのため,これまでに数 多くの液状化対策工法が開発され実用に供されてい るが,いずれの工法も工費が高く,莫大な費用を要 する.今後は重要構造物以外にでも適用できるよう に,費用面でも効果面でもバリエーションのある液 状化対策工法のラインナップが準備されるべきであ る.さらに 2,3割というようなコストダウンでは なく,1オーダー下げるような技術革新を目指すべ きであると考える.極めて低コストかつ既設構造物 直下へ適用できる可能性のある方法の一つとして, 空気注入(図1(a)により地盤を不飽和化が考えられ る.この他,図1(b)に示すように地下水低下工法で 一端地下水を下げた後,地下水が上昇してもある程 度の空気が残留する.

飽和地盤に地震動が作用した場合,過剰間隙水圧 が有効上載圧に達すると,地盤は強度をなくし,液 状化に至る.一方,間隙に空気が存在する地盤に地 震動が作用した場合は空気の圧縮性により,過剰間 隙水圧の上昇が低減され,液状化強度は飛躍的に増 加する.土粒子と水を非圧縮とすると,ある間隙圧 の増加 Δp による土の体積ひずみ ε_v は,土の飽和度 を S_r ,初期間隙圧(絶対圧)を p_0 ,有効拘束圧を σ_c とし,ボイルの法則を用いると次式で表される.

$$\varepsilon_{\nu} = \frac{\Delta p}{p_0} \left(1 - S_r \right) \frac{e}{1 + e} \tag{1}$$

図1(a) 空気注入による地盤の不飽和化のイメージ

図1(b) 地下水低下による地盤の不飽和化

係にあることを示した.

このような土の飽和度の低下による液状化強度の 飛躍的な増加は以前からよく知られており²⁰,地盤 の不飽和化による液状化対策のアイデアは以前から あったが,地下水位以深で残留空気を有する不飽和 地盤上の構造物の地震時挙動についての研究はあま り行われていない.筆者らは,石油タンク等の直接 基礎について,遠心模型振動実験を行い,不飽和化 の効果について検討した³⁰.本稿では,同様に動的 遠心模振動実験により,重力式護岸の液浄化対策と しての地盤不飽和化の効果について検討した.

2. 遠心模型実験

2.1 地盤材料

本実験では表1に示す硅砂8号及び硅砂3号を用 いて,液状化層と下部排水層作成した. 硅砂8号は 細粒分を多く含み透水係数が小さいため,本研究で 用いた 50gの遠心加速度場でも原型の透水係数はか なり小さくなり,粘性流体を用いなくても液状化現 象を再現できる.

表1 硅砂の特性

	No.8	No.3
Specific gravity: G _s	2.65	2.56
Mean particle size: D ₅₀ (mm)	0.100	1.47
Particle size: D ₁₀ (mm)	0.041	1.21
Coefficient of uniformity: Uc	2.93	1.26
Max. void ratio: e _{max}	1.333	0.971
Min. void ratio: e _{min}	0.703	0.702
Permeability coef.: k (m/sec)	2.0 x 10 ⁻⁵	4.6x 10 ⁻³
(k in prototype scale with 50g)	(1.0×10^{-3})	(2.3×10^{-1})

図2 8号硅砂の水分特性曲線

図3 飽和,不飽和硅砂8号の液状化曲線

図4 不飽和化による液状化強度の増加: 硅砂8号

図6 地盤水位低下,上昇用給排水システム

図2は, 硅砂8号の水分特性曲線であり, この図よると, 16場では, 水位の下降, 上昇による過程で,約90%程度の不飽和土となる.また,図3に示した 硅砂8号の液状化曲線,更には図4のε、*と液状化強 度比の関係より, 不飽和化により三軸試験における 液状化強度は大きく増加することが確認できる.

2. 2 実験方法

岸壁構造に対する実際の不飽和化ししては空気注 入工法が現実的な工法であるが,できるだけ均質な 不飽和化地盤を作成するてために,本実験では地盤 水位の低下,上昇により不飽和地盤を作成した.

図5は模型概要と各種センサーの位置を示したも のである.実験では、内径150×450×270mmの剛 性容器を使用し、土槽底部に硅砂3号を厚さ40mm 敷き、その上に空中落下法により厚さ160mm、相対 密度60%の液状化層を作成した.この液状化地盤 上に重さ1.6kg、高さ80mm、幅60mm、奥行150mm のケーソン(50g:設置圧72kPa)を設置し、背面砂層 を作詞した後、真空タンク内で脱気水を土槽下部か ら浸透させることにより地盤を飽和させた.

飽和地盤模型を遠心装置に搭載し,遠心加速度 を50gまで上昇させ後,図6に示す電磁バルブを開 け土槽下部からタンクに排水することにより地盤 の水位を低下させた.水分含水量計(TDR)の値 がある程度一定値になるのを確認した後,排水タ ンクに空圧を供給することで,地盤下部から給水 し,再び初期の位置まで水位を上昇させた.この 時,地盤内水位は排水層の間隙水圧計及びスタン ドパイプで確認し,地盤内間隙水圧計,体積含水 率を間隙水圧計,TDR水分計で計測した.また, この不飽和履歴を与えた模型地盤と与えない模型 地盤に対して 45Hz の正弦波を機械式振動台を用い て与えた.実験条件を表2に示す.

表2 実験条件

Test code	CASE1	CASE2
Relative density Dr (%)	60	60
Degree of saturation* (%)	88	100
Input acceleration amplitude(g)	95	9.5

*: average value evaluated from TDR sensors

3. 実験結果および考察

3.1 水位の低下
 ・再上昇による不飽和履歴

図7にCASE1において水位の低下・再上昇を行っ たときの間隙水圧,体積含水率の経時変化を示す. 排水を行い水位が低下すると,間隙水圧,体積含水 率共に下がっていることが確認できる. 下段に設置 されている TDR2,4 は体積含水率の下がり方が他の 3つに比べて遅く、しかも小さくなっている.水位 上昇後の体積含水率は初期値よりも低い値を示して おり、不飽和履歴が残っていることがわかる. 図8 は、原型寸法で地表面から 2m(TDR4)の地点を基準 とした飽和度と水位の関係である.水位が基準点よ り 1m 下がったところで、飽和度が減少しているこ とから毛管上昇高さは約1m(図9)であることがわ かる.これは重力場において本模型地盤と同じサイ ズで実験したのでは、地盤を不飽和化できないこと を意味しており、地下水面を有する地盤のモデル化 における遠心模型実験の利点の一つを示している.

排水前の最大の体積含水率を飽和度 100%とし求 めた不飽和過程の各時点の飽和度の深さ方向の分布 を図 10 に示す.排水により飽和度は 20%程度まで 減少している.最終的な残留飽和度は,地盤底部で 89%,中部で 81%,浅部で 88%となり,平均残留 飽和度は 88%となった.

3.2 加振実験

図 11 は二つの模型に与えた入力加速度を示した ものである.機械式の振動台を用いて約0.2 秒の短 い波を与えており,必ずしもきれいな正弦波とはな っていないが,二つの実験ではほぼ同じ波を入力で きたことがわかる.

図 12 は各実験ケースにおける加振時の過剰間隙 水圧の経時変化である. 図中の点線は,有効上載圧

図7水位低下上昇による体積含水率,間隙水圧の変化

図8地盤内水位と飽和度の関係:TDR4

図9 50g場における毛管上昇高さ (CASE1)

図12 振動中の過剰間隙水圧の変化

 σ'_{v0} を示している. 飽和地盤のケースである CASE2 の PPT5 では早い段階で過剰間隙水圧が有効上載圧 に達している. 一方,不飽和地盤のケースである CASE1 は CASE2 と比べ,過剰間隙水圧の上昇は緩や かで小さく,振動後期の段階で過剰間隙水圧は減少 している. 振動中の地盤とケーソン上部の応答加速 度の変化を図 13 と 14 にそれぞれ示す. 不飽和地盤 である CASE1 の Acc1~3 を見てみると,振幅はどの 位置においてもほぼ等しく減衰も見られない. 一方, 飽和地盤である CASE2 の加速度応答は, CASE1 と比 べかなり減衰しており,入力加速度に対しても位相 のずれが大きいことから,液状化の影響をうけてい ることが伺える. これは地盤浅部の Acc3 において 顕著である.

ケーソンの挙動の経時変化を図 15 に示す.不飽 和地盤の CASE1 は,飽和地盤である CASE2 のケーソ ンの水平変位の約 1/5,鉛直変位の約 1/2,回転角 の約 1/3 程度まで抑えられており,不飽和化の効果 を確認することができる.

図 16 は振動時のケーソン底部の土圧の時間履歴 を示したものでる. 飽和地盤の CASE2 は,不飽和地 盤の CASE1 と比べケーソンの海側先端部土圧(EP12)

の振幅がかなり大きくなっているのに対して背面側 の先端の土圧計(EP14)の振幅は両 CASE ともほとん ど変わらない.このことから CASE2 は背面の先端部 分を中心にして構造物がロッキングしていると考え られる.この大きな振幅の影響は図 12 に示すケー ソン下の間隙水圧(PPT5)の大きな振幅にも現れて いる.EP12 大きな振幅は、動的な地盤反力が発揮 されていることを意味し、CASE2 のケーソンの鉛直 変位や回転がが水平変位と比べて、ある程度抑えら れていることと対応する.

図 17 は振動中のケーソン背面土圧の変化を示し たものある。背面上部では、土圧挙動に飽和、不飽 和の差は見られないが、下部では、液状化による間 隙水圧上昇の影響が現れ、振動後半部で不飽和ケー スに比べ、飽和ケースで背面土圧が大きくなってい る。さらに、振動成分も前者が後者より大きく、ケ

ーソン底面の土圧の動的挙動と同様の傾向が見られ る。

図17 振動中のケーソン背面の土圧

4. まとめ

本研究では、遠心模型実験装置において 50g の遠 心場で飽和地盤と不飽和地盤の水位を低下・上昇さ せることで不飽和履歴を与えた地盤に正弦波加振を 行い、加振時挙動の比較を行った.上記手法で不飽 和履歴を与えることで、残留飽和度は約 88%にな り、この飽和度で加振による過剰間隙水圧の発生が、 初期の段階で大きく抑制された.飽和地盤の浅部で の加速度応答が入力加速度と比べ減衰していること からも飽和地盤の強度が低下していることがわかる. 結果として、不飽和地盤のケーソンの鉛直変位、水 平変位、そして回転角は飽和地盤に比べ小さくなっ た.また、ケーソン前面海底部の液状化を防ぐ布施 部ことにより、ケーソンの回転を効果的に抑制でき ることがわかった.

参考文献

 Okamura, M. and Soga, Y., Effect on liquefaction resistance of volumetric strain of pore fluid, Soils and Foundations, Vol. 46, No. 5, pp. 695-700, 2006

- 2) Yoshimi, Y., Tanaka, K. and Tokimatsu, K., Liquefaction resistance of a partially saturated sand, *Soils and Foundations*, 29(3), 157-162, 1989
- 3) 井澤淳,五十嵐玲奈,増田雅士,岡村未対,竹村次朗,日下 部治,地盤の不飽和化による安価な液状化対策工法の

開発に向けた基礎的研究,平成 19 年度首都圏プロジェ クト成果報告シンポジウム