実在建物の強制加振による減衰効果確認に関する研究

大木 洋司 1), 笠井 和彦 2)

- 1) 東京工業大学建築物理研究センター 助教, ooki@serc.titech.ac.jp
- 2) 東京工業大学建築物理研究センター 教授, kasai@serc.titech.ac.jp

1. はじめに

パッシブ制振が構造が様々な建築物に採用される ようになって久しいが,耐震構造,または免震構造 やアクティブ制振構造とは異なり,実測データがほ とんどないのが現状である.

よって本研究では、起振機による強制加振を行い、 そこから得られた伝達関数や自由振動波形から固有 振動数、減衰定数を算定して、建物の動特性を推測 する.起振機による加振力には限界があり、建物頂 部での最大応答加速度 10~40 cm/s² 程度だが、常 時微動観測(応答 1 cm/s²以下)や震動台実験(応 答 100 cm/s²以上)など、他のデータと組み合わせ ることで、建物の動特性の振幅依存性を検討するこ とができる.ただし、現在も実験は進行中で、本報 にはその結果の一部を示す.さらなる検討は平成 21 年度建築学会大会などに投稿するので、そちら を参照されたい.

2. 実験の概要

2.1 計測対象建物およびセンサー・起振機配置

試験体は実大 5 層鋼構造制振建物試験体¹⁾とした. 本試験体は,JR 鷹取波(1995 年)入力時に,主架 構を弾性範囲(層間変形角1/100 程度)にとどるよ う設計されている.また 1 層,2 層には ALC パネル やガラスカーテンウォール,2~5 層には間仕切り 壁,といった仕上げがなされている.

図 1 に試験体内部でのセンサー(サーボ型速度 計)配置を示す.併進およびねじれ応答を計測する のが主な目的であるが,同じ試験体の応答(水平 2 および鉛直方向)を長期観測する他の研究チームの センサーと位置を一部同じとしており,将来的に震 動台のロッキングの影響も考慮できるよう配慮した.

起振機(図 1)は、2 台を屋上に配置した(図 1). 定常状態での最大起振力は2台で3.2 kNであ る(設計値).

2.2 実験および分析方法

起振機実験では、まず X, Y, ねじれ方向におい て、0.2 Hz~9 Hz でのスイープ加振を行う.ちな みにねじれ方向加振は、X 方向加振での起振機設置 状態から、2 台を逆位相で加振して行う.その後、 加振力に対する屋上応答加速度の伝達関数を算定し, その振幅のピークや位相から,建物の1次,2次モ ード固有振動数を予測する.続いてX方向,Y方向, ねじれ方向で,1次および2次モードでの定常加振 を20秒間行った後,起振機を急停止して建物を自 由振動させる.ここから減衰定数を予測する.

図1 各フロアでのセンサーと起振機の配置 (□=起振機実験のセンサー, ○=長期観測のセンサ ー(3成分))

3. 起振機実験から得られた特性

対象建物は震動台実験試験体であり,最大でJR 鷹取波(1995年)の倍率 100%を経験する. 起振機 実験は,震動台実験前と終了後に行った.

実際の現場では、剛心と加振点を一致できないこと、起振機の急停止が完全ではないこと、などの理 由で自由振動波形に高次の振動が混在し、減衰の評 価は容易でない.以下、データ処理がうまくいって いる鋼材ダンパー制振建物の場合について述べる.

3.1 鋼材ダンパー制振構造のスイープ加振

図2は、鋼材ダンパー制振構造での結果,起振加 速度に対する屋上応答加速度の伝達関数である.

加振後の方が応答倍率が大きいことについての 考察は後述する.ここでは固有振度数の変化にのみ, 着目する.加振前後の1次固有振動数の変化は、X 方向で 2.10 Hz→2.08 Hz, Y 方向で 2.03Hz→1.98 Hz, ねじれ方向で 3.03 Hz→2.88 Hz であった. 鉄 骨架構自体には大きな地震入力による損傷が見られ なかったため,これは内外装材の損傷によると推測 される.ちなみに,この段階でコンクリート床スラ ブに生じたひび割れは概ね 0.1 mm 以下であり,建 物剛性低下への寄与はさほどでないと推測される.

図 2 鋼材ダンパー制振構造での起振加速度と RF 加速度の伝達関数(実線=加振前,破線=加振後)

3.2 定常加振および自由振動

図 3 は, 震動台実験前の試験体を定常加振後, 自由振動させた結果(Y 方向1次)である. 時刻歴 波形に対応する時間での固有周期と減衰定数の変化 も併せて示す. 時刻6~11秒での平均固有振動数は 2.06 Hz で 3.2 節の結果とよく一致した.

図 3 試験体の自由振動と周期・減衰の変化の時刻 歴(Y方向1次,震動台実験前)

図 4 試験体の自由振動と周期・減衰の変化の時刻 歴(Y方向1次,震動台実験後)

また減衰定数は 0.0292 となった. それに対して, 図4は震動台実験後の結果で,時刻 6~11 秒での平 均固有振動数は 1.94 Hz,減衰定数は 0.0142 であ った.実験前に比較して,減衰定数は約 0.5 倍とな った.これは定常加振時の応答加速度が,実験後の 方が増加している点からも,読み取ることができる. さらには,図2の伝達関数において実験後(破線) が大きな応答倍率を示していることも,同じ現象を 説明している.尚,図3,4 で定常加振時の加速度 応答が約2倍異なるのに対し,図2の1次固有振動 数での応答倍率が,より大きいという違いは,実験 時間の制限からスイープ中に応答振幅が十分大きく なるまで加振時間を設けることができなかったこと が原因と考えられる.

鋼材ダンパー制振構造へ大きな地震入力を行っ た前後で,固有振動数がわずかに小さくなり,減衰 定数が減少したのは,前述した内外装材の損傷によ り,それら部材間での接合が切れるなどしたことが 考えられる.

4. まとめ

実大鋼材ダンパー制振構造の起振機実験を行い, 大地震加速度入力前後での固有振動数と減衰定数の 変化について調査し,その理由について考察した. 参考文献

 Kasai, K., Ooki, Y.; Ishii, M.; Ozaki, H.; Ito, H.; Motoyui, S.; Hikino, T.; and Sato, E. 2008. Value-added 5-story steel frame and its components: Part 1 - Full-scale damper tests and analyses, Proc. 14WCEE, Beijing, S17-01-013