粘弾性地盤における地震波動解析のための 演算子積分時間領域高速多重極境界要素法の開発

○廣瀬 壮一¹⁾, 斎藤 隆泰²⁾, 木本和志³⁾

1) 東京工業大学大学院 情報理工学研究科 情報環境学専攻, shirose@cv.titech.ac.jp
 2) 日本学術振興会特別研究員 PD, tsaito@taku.anc-d.fukui-u.ac.jp
 3) 東京工業大学大学院 情報理工学研究科 情報環境学専攻, kimoto.k.aa@m.titech.ac.jp

1. はじめに

都市を支える地盤中の地震波の挙動を明らかにする ことは、都市の防災計画を策定する上で最も有用な情 報を提供することとなる.実際、数値シミュレーション による地震・津波予測に関する研究¹⁾は、これまでに も多くの研究者が手がけており、実問題への応用が検 討されている.

しかし、実現への課題は多い、例えば、地震波の解析 を含め、波動解析に非常に有効な手法として知られて いる境界要素法は,扱う領域の大きさが対象とする波 動の波長に比べて大きい場合、要素数が膨大になり、必 然的に大規模な計算を実行することとなる. そのため、 現実的な計算時間内で解析を実行することは極めて困 難となる.また,例えば力学的に厳密なモデルのもと で地震断層解析を行う場合は、周波数領域での解析が 不可能となり、時間領域での解析が必要2)となる.しか しながら、一般的に、時間領域の境界要素解法は、周波 数領域の解法に比べより多くの計算時間や記憶容量を 必要とするばかりか、時間ステップが小さい場合の解 の安定性が問題視されている.また,粘弾性地盤中の 複雑な地震波動伝播問題等に対しては,閉じた時間領 域の基本解を求めることができないため、通常の時間 領域境界要素法の手順で解を求めることすら困難とな る. そのため, 通常の境界要素法では, 過去の地震によ るデータや既知の地層構造から簡易なモデル化を施し、 防災上の間題点を再確認するのに応用されている程度 であり,実用的には依然として改善の余地がある.

そこで,本論文では,時間領域境界要素法の計算効率 を改善するために高速多重極法³⁾を,解の安定性を向 上させるために Lubich により提案された演算子積分 法⁴⁾を境界要素法に適用した新たな時間領域境界要素 法を提案する. なお提案する手法は,粘弾性波動問題の ような時間領域で閉じた基本解を求めることができな い問題に対してさえも威力を発揮する手法である. そ のため,以下では,粘弾性波動問題における定式化を示 し,数値解析例と共に,本手法の有効性を確認する.

2. 演算子積分法

はじめに、演算子積分法 (Operational Quadrature Method) について述べる. Lubich は、繰り込み積分 $f * g(t) \delta$ 、時間依存の関数である $f(t - \tau)$ のラプラス 変換を用いた離散化繰り込み積によって近似する手法 を提案した. 一般的に、繰り込み積分は次のように表 される.

incident wave scattered wave 図 1 散乱問題のモデル

$$f \ast g(t) = \int_0^t f(t-\tau)g(\tau)d\tau \quad , \ t \ge 0 \qquad (1)$$

式 (1) で * は時間に関する繰り込み積を表す. Lubich の演算子積分法によれば,式 (1) で表される繰り込み 積分は,時間 t,時間増分 Δt を用いた n ステップの離 散化繰り込み積に近似される. すなわち,

$$f * g(n \triangle t) \simeq \sum_{j} \omega_{n-j}(\triangle t) g(j \triangle t).$$
 (2)

ただし, $\omega_j(\Delta t)$ は重み関数であり,

$$\omega_n(\Delta t) = \frac{1}{2\pi i} \int_{|z|=\rho} F\left(\frac{\delta(z)}{\Delta t}\right) z^{-n-1} dz$$
$$\simeq \frac{\rho^{-n}}{L} \sum_{l=0}^{L-1} F\left(\frac{\delta(z_l)}{\Delta t}\right) e^{\frac{-2\pi i n l}{L}} \tag{3}$$

で与えられる. ここで,式(3)の $\delta(z_l)$ は線形マルチス テップ法(差分法)における生成多項式の商であり, $z_l = \rho e^{2\pi i l/L}$ によって表される. ρ , Lは目標とする精 度 ϵ によって決定されるパラメータであり, $\rho^L = \sqrt{\epsilon}$ により決定される. また, Fは式(1)における時間依 存関数 fのラプラス変換である.

3. 粘弾性波動問題における時間領域境界要素法

以下の定式化では、面内波動問題を考えることとし、3 次元直交座標系 $\mathbf{x} = (x_1, x_2, x_3)$ に対し、変位は (x_1, x_2) 方向成分のみを考える.また、全ての物理量は x_3 に依 存しないものとして考える.以上の規約の下、図1で 表されるような線形粘弾性波動問題の2次元領域 D 内における \bar{D} による散乱問題を考える.入射波 u_i^{III} が存在し, 散乱体 \bar{D} の境界表面 S により反射・散乱 されるとする.このとき,入射波が散乱体 \bar{D} に到達す るまで静かな過去を持つとする.すなわち,初期条件 $u_i(\mathbf{x}, t = 0) = 0$ 及び $\partial u_i(\mathbf{x}, t = 0)/\partial t = 0$ を考慮す れば,変位 u_i ,対応する表面力 t_i が満たす支配方程式 及び境界条件はそれぞれ次のように表される.

$$\mu(t) * \dot{u}_{i,jj}(\boldsymbol{x}, t) + \left(K(t) + \frac{1}{3}\mu(t)\right) * \dot{u}_{j,ij}(\boldsymbol{x}, t)$$
$$=\rho \ddot{u}_i(\boldsymbol{x}, t) \quad \text{in } D \tag{4}$$

$$u_i = \bar{u}_i \quad \text{on } S_1, \quad t_i = \bar{t}_i \quad \text{on } S_2,$$

$$S_2 = S \setminus S_1 \tag{5}$$

ただし, ρ は密度, $\mu(t)$, K(t) はそれぞれ, せん断弾性 係数, 体積弾性係数に対する緩和関数を表し, 不遡及 の公理 $\mu(t) = 0, -\infty < t < 0$ を満足するものとする. また, (⁻) は時間に関する微分を表し, \bar{u}_i 及び \bar{t}_i は与 えられた境界条件である. さて, 一般に線形粘弾性波 動問題に対しては時間領域において閉じた基本解を得 ることができない. そこで, もし仮に時間領域におけ る閉じた基本解 $U_{ij}(x, y, t)$ および対応する二重層核 $T_{ij}(x, y, t)$ が与えられて, それらの性質は弾性体のそ れと同様であると仮定すれば, 式 (4),(5) により定義さ れた問題の解は, 次の時間領域境界積分方程式を解く ことにより求まる.

$$C_{ij}(\boldsymbol{x})u_j(\boldsymbol{x},t) = u_i^{\text{in}}(\boldsymbol{x},t) + \int_S U_{ij}(\boldsymbol{x},\boldsymbol{y},t) * t_j(\boldsymbol{y},t) dS_y - \int_S T_{ij}(\boldsymbol{x},\boldsymbol{y},t) * u_j(\boldsymbol{y},t) dS_y$$
(6)

ただし,式(6)において, C_{ij}は境界表面 S に依存する 自由項である.通常の問題では、境界積分方程式(6)に 対して境界上に適切な近似関数を導入し,時間・空間に 関して離散化することで,境界未知量に関する代数方程 式を得ることにより解が求まる.しかしながら,先に述 べたように、粘弾性波動問題における時間領域境界要素 法では,式(6)における基本解 $U_{ii}(\boldsymbol{x},\boldsymbol{y},t), T_{ii}(\boldsymbol{x},\boldsymbol{y},t)$ を直接に閉じた形で求めることが出来ない. そのため, 影響関数の評価に対して,時間領域境界要素法の影響 マトリックスを周波数領域境界要素法の影響マトリッ クスから積分変換により直接数値的に求める方法や、 時間領域境界要素法の影響関数を周波数領域問題の基 本特異解の積分変換により数値的に求める方法が用い られてきた⁵⁾⁶⁾. これらの手法は, 巧妙ではあるが, 時間 増分が小さい場合の解の安定性や、大規模問題への対 応は難しいのが難点である. そこで、以下では、まず式 (6) に演算子積分法を用いて解の安定性を向上させる 方法について解説する.

粘弾性波動問題における演算子積分時間領域境界 要素法の定式化

式 (6) の境界積分方程式を M 個の一定要素で離散 化し, 数値的に解くことを考える. 滑らかな境界 S に 対して $x \in D \rightarrow x \in S$ なる極限移行を考慮すれば, 時間増分 Δt に対して, 次の第 n ステップにおける離 散化された時間領域境界積分方程式を得ることができ る.

$$\frac{1}{2}u_i(\boldsymbol{x}, n\Delta t) = u_i^{\text{in}}(\boldsymbol{x}, n\Delta t)$$
$$+ \sum_{\alpha=1}^{M} \sum_{k=1}^{n} \left[A_{ij}^{n-k}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}) t_j^{\alpha}(k\Delta t) - B_{ij}^{n-k}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}) u_j^{\alpha}(k\Delta t) \right]$$
(7)

ただし,式(7)において, A_{ij}^m, B_{ij}^m は影響関数である. 影響関数 A_{ij}^m, B_{ij}^m は式(2)の離散化繰り込み積とその 重み表現式(3)を用いた演算子積分法により,それぞ れ次のように得ることができる.

$$\begin{aligned} A_{ij}^{m}(\boldsymbol{x},\boldsymbol{y}) &= \frac{\rho^{-m}}{L} \sum_{l=0}^{L-1} \int_{S} \hat{U}_{ij}(\boldsymbol{x},\boldsymbol{y},s_{l}) e^{-\frac{2\pi i m l}{L}} dS_{y} \end{aligned} \tag{8} \\ B_{ij}^{m}(\boldsymbol{x},\boldsymbol{y}) &= \frac{\rho^{-m}}{L} \sum_{l=0}^{L-1} \int_{S} \hat{T}_{ij}(\boldsymbol{x},\boldsymbol{y},s_{l}) e^{-\frac{2\pi i m l}{L}} dS_{y} \end{aligned}$$

ただし, s_l は $s_l = \delta(z_l)/(\Delta t)$ で定義される.式 (8),(9) は離散フーリエ変換の形で表されていることから、そ れらの和には高速フーリエ変換を利用することができ る.また、ラプラス変換域における基本解 $\hat{U}_{ij}(\boldsymbol{x}, \boldsymbol{y}, s)$ 及び $\hat{T}_{ij}(\boldsymbol{x}, \boldsymbol{y}, s)$ は次のように求めることができる.

$$\begin{split} \hat{U}_{ij}(\boldsymbol{x}, \boldsymbol{y}, s) \\ = & \frac{1}{2\pi\mu^*(s)} \left\{ K_0(s_T r) \delta_{ij} - \frac{1}{s_T^2} [K_0(s_T r) - K_0(s_L r)]_{,ij} \right\} \\ (10) \\ \hat{T}_{ij}(\boldsymbol{x}, \boldsymbol{y}, s) &= n_j(\boldsymbol{y}) \rho(c_L^{*2} - 2c_T^{*2}) \hat{U}_{ik,k}(\boldsymbol{x}, \boldsymbol{y}, s) \\ &+ \rho c_T^{*2} \left(\hat{U}_{ij,k}(\boldsymbol{x}, \boldsymbol{y}, s) + \hat{U}_{ik,j}(\boldsymbol{x}, \boldsymbol{y}, s) \right) n_k(\boldsymbol{y}) \quad (11) \end{split}$$

ただし c_L^* および c_T^* は複素せん断弾性係数 $\mu^*(s)$ や 複素体積弾性係数 $K^*(s)$ に対応した複素位相速度で あり, それぞれ $c_L^* = \sqrt{(K^*(s) + (4/3)\mu^*(s))/\rho}$, $c_T^* = \sqrt{\mu^*(s)/\rho}$ で与えられる. $\mu^*(s)$, $K^*(s)$ は緩和関数 $\mu(t), K(t)$ のラプラス変換 $\hat{\mu}(s), \hat{K}(s)$ により, それぞ れ $\mu^*(s) = s\hat{\mu}(s), K^*(s) = s\hat{K}(s)$ で与えられる. ま た, $r = |\mathbf{x} - \mathbf{y}|$ であり, K_n は n 次の修正ベッセル関数 を表す. ここで式 (10) 中の s_L, s_T はそれぞれ表記を簡 単にするために, c_L^*, c_T^* で除した値 $s_L = \delta(z)/(c_L^* \Delta t)$, $s_T = \delta(z)/(c_T^* \Delta t)$ とした. そのため, 以降の定式化に おいても, 同様の表記を用いたことに注意する. これ

図2点 yo における多重極展開

より,式(7)を書き直せば,

$$\frac{1}{2}u_{i}(\boldsymbol{x}, n \Delta t)
+ \sum_{\alpha=1}^{M} \left[B_{ij}^{0}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}) u_{j}^{\alpha}(n \Delta t) - A_{ij}^{0}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}) t_{j}^{\alpha}(n \Delta t) \right]
= u_{i}^{\text{in}}(\boldsymbol{x}, n \Delta t)
+ \sum_{\alpha=1}^{M} \sum_{k=1}^{n-1} \left[A_{ij}^{n-k}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}) t_{j}^{\alpha}(k \Delta t) - B_{ij}^{n-k}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}) u_{j}^{\alpha}(k \Delta t) \right]$$
(12)

となる. よって, 第 n ステップ以前の境界値 $u_i^{\alpha}, t_i^{\alpha}$ が 全て求まっていれば,式(12)の右辺は既知となり, 第 nステップにおける境界値を決定することができる. つ まり, n = 1 からはじめて, 各ステップ毎に境界未知量 を順番に決定することができる.

しかしながら,解くべき問題の規模が大きい場合に は,式(12)を逐次的に解いていく上での計算時間・記 憶容量を抑える工夫が必要である.以下では,式(12)に 高速多重極法を適用することを考える.

5. 高速多重極法の適用

式(12)の右辺の計算を高速多重極法を用いて解く ことを考える.高速多重極法のアルゴリズムは文献⁷⁾ に詳しい.ラプラス変換域での粘弾波動問題の基本解 (10)及び対応する二重層核(11)は形式的には周波数 領域での等方弾性体における面内波動問題のそれらと 同形式で表される.よって,高速多重極法を適用する際 の各種移動公式も,周波数領域における面内波動問題 で使用する各種移動公式と同形式で表すことが出来る.

5.1 粘弾性面内波動場の多重極展開

まず,粘弾性面内波動問題におけるラプラス変換域 での基本解(10)を次のようなポテンシャル表現に変 形する.

$$\hat{U}_{ij}(\boldsymbol{x}, \boldsymbol{y}, s) = \frac{1}{\mu^*(s)s_T^2} \left[\Phi^U_{,i} + e_{3ij} \Psi^U_{,j} \right]$$
(13)

ただし, Φ^U および Ψ^U はそれぞれ縦波, 横波成分に関する変位ポテンシャルであり,

$$\Phi^U = \frac{1}{2\pi} K_0(s_L |\boldsymbol{x} - \boldsymbol{y}|)_{,k}$$
(14)

$$\Psi^{U} = e_{3kl} \frac{1}{2\pi} K_0(s_T |\boldsymbol{x} - \boldsymbol{y}|)_{,l}$$
(15)

で表される.

さて,図2のように観測点x,源点yに対して,点yの 近くに多重極点 y_0 をとり,点 y_0 から見たx, yの極座 標成分をそれぞれ $(r, \theta), (\rho, \phi)$ とすれば,式 (14),(15) に Graf⁸⁾の加法定理を用いて展開すると,

$$\Phi^U = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} M_n^U K_n(s_L r) e^{in\theta}$$
(16)

$$\Psi^U = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} N_n^U K_n(s_T r) e^{in\theta}$$
(17)

と多重極展開できる.ここで,式 (16), (17) において, M_n^U, N_n^U はそれぞれ点 y_0 に関する縦波,横波に関する多重極モーメントであり,

$$M_n^U = -\frac{\partial}{\partial y_k} \left[I_n(s_L \rho) e^{-in\phi} \right]$$
(18)

$$N_n^U = -e_{3kl} \frac{\partial}{\partial y_l} [I_n(s_T \rho) e^{-in\phi}]$$
(19)

で定義される.ここで I_n はn次の第一種修正ベッセル 関数でる.二重層核に関しても同様に考えれば, y_0 に 関する縦波,横波に関する多重極モーメント M_n^T, N_n^T はそれぞれ,

$$M_n^T = -\frac{\partial}{\partial y_j \partial y_k} [I_n(s_L \rho) e^{-in\phi}]$$
(20)

$$N_n^T = -e_{3km} \frac{\partial}{\partial y_j \partial y_m} [I_n(s_T \rho) e^{-in\phi}]$$
(21)

で定義されることがわかる. さて,式(16),(17)の多重 極展開は,スカラー波動場における多重極展開と同様 の形をしている.よって,高速多重極法を構成する上で 必要な各種移動公式(M2M, M2L, L2L)もスカラー波 動場における移動公式と同様の形で表すことが可能で ある.

5.2 多重極,局所展開係数の移動公式

多重極展開 (16),(17) に対応し, 観測点 *x* について, 点 *x*₀ まわりの局所展開を次のように定義する.

$$\Phi(\boldsymbol{x}) = \sum_{n=-\infty}^{\infty} L_n I_n(s_L r) e^{-in\theta}$$
(22)

$$\Psi(\boldsymbol{x}) = \sum_{n=-\infty}^{\infty} H_n I_n(s_T r) e^{-in\theta}$$
(23)

ここで r, θ はそれぞれ点 x_0 を基準としたxの極座標 成分 (r, θ) である.また L_n, H_n はそれぞれ M_n, N_n に 対応する局所展開係数である.

多重極点の移動による多重極係数の変換式 (M2M), 多重極係数から局所展開係数への変換 (M2L),局所展 開点の移動による局所展開係数の変換式 (L2L) は Graf の加法定理をそれぞれの移動点に対して適用すれば導 くことが出来る.それらの結果をまとめると,縦波,横 波に関する多重極係数 M_n, N_n の M2M は,

$$M'_{n} = \sum_{m=-\infty}^{\infty} M_{m} I_{n-m}(s_{L}\rho) e^{-i(n-m)\phi} \qquad (24)$$

$$N'_{n} = \sum_{m=-\infty}^{\infty} N_m I_{n-m}(s_T \rho) e^{-i(n-m)\phi} \qquad (25)$$

であり, M2Lは,

$$L_n = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} (-1)^m M_m K_{n+m}(s_L \rho) e^{i(n+m)\phi}$$
(26)

$$H_n = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} (-1)^m N_m K_{n+m}(s_T \rho) e^{i(n+m)\phi}$$
(27)

であり,そして L2L は,

$$L'_{n} = \sum_{m=-\infty}^{\infty} (-1)^{n-m} L_{m} I_{n-m}(s_{L}\rho) e^{i(n-m)\phi} \quad (28)$$

$$H'_{n} = \sum_{m=-\infty}^{\infty} (-1)^{n-m} H_{m} I_{n-m}(s_{T} \rho) e^{i(n-m)\phi}$$
(29)

で与えられる. ただし, M'_n, N'_n ,および L'_n, H'_n はそれ ぞれ展開点の移動により得られる新しい多重極, 局所 展開係数を表す. また, 座標値 (ρ, ϕ) は, 新しい展開点 から古い展開点を見た相対座標の極座標成分である.

5.3 多重極展開のスケーリング

修正ベッセル関数は |z| が大きいとき,

$$I_n(z) \sim e^{|\Re[z]|}, \quad K_n(z) \sim e^{-z}$$
 (30)

である.したがってセルのサイズが大きい場合には M2M や L2L の変換において展開係数や,修正ベッセ ル関数の値が相当に大きく(小さく)なり,数値計算で 扱える範囲をこえてしまう可能性がある.したがって, 多重極展開や各種移動公式に適切なスケーリングを施 してやることが安定なアルゴリズムのために必須とな

⊠ 3 Scaling of M2M.

る.

そのため,第一種,第二種修正ベッセル関数 I_n, K_n に対して次のようなスケーリングを施す.

$$\breve{I}_n(z) = e^{-z} I_n(z), \quad \breve{K}_n(z) = e^z K_n(z)$$
(31)

これより, セル $C_{\xi}(\xi$ はセルの対角長の半分の長さを表 す)におけるスケーリングされた多重極展開係数, お よび局所展開係数もそれぞれ次のように表すこととす る.

$$\check{M}_{\xi,n} = e^{-s_L \xi} M_n, \quad \check{N}_{\xi,n} = e^{-s_T \xi} N_n$$
(32)

 $\check{L}_{\xi,n} = e^{s_L \xi} L_n, \quad \check{H}_{\xi,n} = e^{s_T \xi} H_n$
(33)

ここで $\check{M}_{\xi,n}, \check{N}_{\xi,n}$ および $\check{L}_{\xi,n}, \check{H}_{\xi,n}$ はそれぞれスケー リングされた多重極係数,局所展開係数を表す.この とき,演算子積分法の成立条件から $\Re[s_{\beta}]\rho > 0$ ($\beta = L \text{ or } T$)であることに注意する.これより,スケーリン グされた粘弾性波動場のM2Mは,セル C_{ξ} から親セル $C_{2\xi}$ に対して図3のように考えて,

$$\breve{M}_{2\xi,n} = \sum_{\substack{n=-\infty\\\infty}}^{\infty} \breve{M}_{\xi,m} \breve{I}_{n-m}(s_L \xi) e^{-i(n-m)\phi} \qquad (34)$$

$$\check{N}_{2\xi,n} = \sum_{n=-\infty}^{\infty} \check{N}_{\xi,m} \check{I}_{n-m}(s_T \xi) e^{-i(n-m)\phi} \qquad (35)$$

となる. M2L の場合は同一レベル (セルの大きさが等 しいもの)同士の変換である. セル C_{ξ} から遠方セル C_{ξ} へのスケーリングされた M2L は,

$$\check{L}_{\xi,n} = \frac{e^{s_L(2\xi-\rho)}}{2\pi} \times \sum_{n=-\infty}^{\infty} (-1)^m \check{M}_{\xi,m} \check{K}_{n+m}(s_L\rho) e^{i(n+m)\phi} \quad (36)$$

$$\check{\mu}_{\dots} = e^{s_T(2\xi-\rho)}$$

$$H_{\xi,n} = \frac{1}{2\pi}$$

$$\times \sum_{n=-\infty}^{\infty} (-1)^m \breve{N}_{\xi,m} \breve{K}_{n+m}(s_T \rho) e^{i(n+m)\phi} \qquad (37)$$

となり、 セル $C_{2\xi}$ から子セル C_{ξ} へのスケーリングさ

$$\check{L}_{\xi,n} = \sum_{n=-\infty}^{\infty} (-1)^{(n-m)} \check{L}_{2\xi,m} \check{I}_{n-m}(s_L \xi) e^{i(n-m)\phi}$$
(38)

$$\breve{H}_{\xi,n} = \sum_{n=-\infty}^{\infty} (-1)^{(n-m)} \breve{H}_{2\xi,m} \breve{I}_{n-m}(s_T \xi) e^{i(n-m)\phi}$$
(39)

で表される. スケーリングされた多重極展開および局 所展開も式 (31), (32), (33) をそれぞれ (16), (17) や (22), (23) に用いれば同様に得られる.

5.4 時間ステップ解析と高速多重極法の適用

今,式 (12) における各ステップ毎の行列ベクト ル積の計算に高速多重極法を適用することを考え る.例えば,式 (12)の右辺第二項の行列ベクトル積 $\sum_{\alpha=1}^{M} A_{ij}^{n-k}(\mathbf{x}, \mathbf{y}^{\alpha}) t_{j}^{\alpha}(k \Delta t)$ の計算部分に関する遅延 ポテンシャルを具体的に書き下すと,

$$u_i^{R_A}(\boldsymbol{x}, n \triangle t) = \sum_{k=1}^{n-1} \sum_{\alpha=1}^{M} A_{ij}^{n-k}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}) t_j^{\alpha}(k \triangle t)$$
$$= \sum_{k=1}^{n-1} \frac{\rho^{-(n-k)}}{L} \sum_{l=0}^{L-1} \left[\sum_{\alpha=1}^{M} t_j^{\alpha}(k \triangle t) \int_S \hat{U}_{ij}(\boldsymbol{x}, \boldsymbol{y}^{\alpha}, s_l) dS_y \right]$$
$$\times e^{-2\pi i (n-k)l/L}$$
(40)

と書ける.式(40)における右辺の[]内は境界上の積分 の項であるから、この部分の計算が高速多重極法により 高速化される.また、その[]内の計算に対し、FFTを 適用すれば $A^m t^k = \sum_{\alpha=1}^{M} A^m_{ij}(\mathbf{x}, \mathbf{y}^{\alpha}) t^{\alpha}_{j}(k \Delta t), (m = 0, \dots, L-1)$ が計算される.いま、式(40)において、各 ステップ毎の遅延ポテンシャルの計算を行列の形で表 せば、 $u^{R_{A,n}} = \{u^{R_A}_i(\mathbf{x}^{\alpha}, n \Delta t)\}(\alpha = 1, \dots, M) \ge U$ て、

$$\left\{ \begin{array}{c} \boldsymbol{u}^{R_{A},1} \\ \boldsymbol{u}^{R_{A},2} \\ \boldsymbol{u}^{R_{A},3} \\ \boldsymbol{u}^{R_{A},4} \\ \vdots \\ \boldsymbol{u}^{R_{A},n} \end{array} \right\} = \left[\begin{array}{c} 0 \\ \boldsymbol{A}^{1}\boldsymbol{t}^{1} \\ \boldsymbol{A}^{2}\boldsymbol{t}^{1} + \boldsymbol{A}^{1}\boldsymbol{t}^{2} \\ \boldsymbol{A}^{3}\boldsymbol{t}^{1} + \boldsymbol{A}^{2}\boldsymbol{t}^{2} + \boldsymbol{A}^{1}\boldsymbol{t}^{1} \\ \cdots \\ \boldsymbol{A}^{n-1}\boldsymbol{t}^{1} + \cdots + \boldsymbol{A}^{1}\boldsymbol{t}^{n-1} \end{array} \right]$$

$$(41)$$

となる. 高速多重極法を用いるので, 実際には, 例えば 式 (41) の右辺の計算を行うために A^m の係数を保存 しておく必要はない. つまり, 計算には, 第n ステップ までの遅延ポテンシャルの部分和を格納する配列一列 のみを用意し, 第k ステップ目の t^k が得られた直後に 高速多重極法と FFT により $A^m t^k$ を計算し, その用意 した配列へ加算していけばよい. 各ステップ毎に得ら れた部分和は二度と必要としないので, 記憶しておく 必要もない. 従来の時間領域境界要素法では通常, A^m の係数を保存しておく必要があることから, 高速多重

図 5 空洞による入射波の散乱モデル

極法を用いることにより大幅に記憶容量を削減するこ とが可能である.

6. 数值解析例

6.1 三要素標準モデル

数値解析例について説明する前に、本解析で用いる 粘弾性モデルについて簡単にまとめておく.一般的に 粘弾性波動問題を扱う場合、そのモデル化にはいくつ かあるが、以下の解析では図4のように粘弾性波動場 を、粘性係数ηのダッシュポット、ばね定数μ1,μ2の 二つのばねを用いた三要素標準モデル⁹⁾とし、せん断 方向にのみ粘弾性効果を考慮した解析を行う.

ここで扱う三要素標準モデルの場合,その複素せん 断弾性係数はラプラス変換域で次のようになる.

$$\mu^*(s) = \mu_R \frac{1 + s\tau_\sigma}{1 + s\tau_\epsilon} \tag{42}$$

ただし、 τ_{σ} 及び τ_{ϵ} はそれぞれ応力緩和時間,ひずみ緩 和時間であり,図4の三要素標準モデルのパラメータ を用いて

$$\tau_{\sigma} = \eta \left(\frac{1}{\mu_1} + \frac{1}{\mu_2}\right), \quad \tau_{\epsilon} = \frac{\eta}{\mu_1} \tag{43}$$

と表される.また、 $\mu_R = \mu_2$ は緩和弾性係数であり、 $t \rightarrow \infty$ におけるせん断弾性係数となる. $t \rightarrow 0$ にお ける弾性係数は初期弾性係数 μ_0 であり、応力緩和時間 τ_{σ} とひずみ緩和時間 τ_{ϵ} を用いて次式で表される.

$$\mu_0 = \lim_{s \to \infty} \mu^*(s) = \mu_R \frac{\tau_\sigma}{\tau_\epsilon} \tag{44}$$

図 6 三要素標準モデルを用いた入射リッカー波, $t_0 = T_0, t_s = 3T_0, \tau_\sigma = 1.0, \tau_\epsilon = 0.25, c_0 = 2a/T_0$ の場合. (a) $x_1/a = 0.0, 1.0, 2.0, 3.0$ における u_1/u_0 の時間変化 (b) $t/T_0 = 3.0, 4.0, 5.0, 6.0$ における入射波形.

6.2 1 つの空洞による粘弾性面内波動の散乱問題

はじめに、図 5 のような半径 a の空洞による粘弾性 面内波動の散乱問題を考える.入射波として Ricker 波 を粘弾性体用に修正したものを用いる. 今,入射波の 中心周波数に対応する時間パラメータを $t_0 = T_0$,位相 のずれを $t_s = 3T_0$ とすれば,入射波は Ricker 波の逆 フーリエ変換 \mathcal{F}^{-1} を用いて次式で与えられる.

$$u_{i}^{\text{III}}(\boldsymbol{x},t) = u_{0}\delta_{i1}\mathcal{F}^{-1}\left[2t_{0}\sqrt{\pi}\left(\frac{wt_{0}}{2}\right)^{2}e^{-\left(\frac{wt_{0}}{2}\right)^{2}}e^{i(k_{L}x_{1}+wt_{s})}\right]$$
(45)

ここで、 u_0 は変位振幅、 ω は角周波数、 k_L は縦波の 波数である. 図 6 (a) に、 $x_1/a = 0.0, 1.0, 2.0, 3.0$ に おける入射波の時刻歴応答を、図 6 (b) に、 $t/T_0 =$ 3.0, 4.0, 5.0, 6.0 における入射波形を示す. 図 6 より、 入射波は距離に対して減衰波形になっており、さらに 時間が進むにつれて、波速が遅くなっていることが確 認できる. また、時間と共に、波形自体も減衰する.

図 7 従来法,本手法による (a) A 点, (b) B 点における u₁/u₀ の時間変化

図7は図5中のA, B点における変位 u₁/u₀の時刻 歴応答を示しており、空洞は一定要素, 64 要素で離散 化し、 $N = L = 128, \rho = 0.91398170$ ($\epsilon = 10^{-10}$) と した場合の結果である.ただし,緩和弾性係数と初期弾 性係数の比を $\mu_R/\mu_0 = 0.5$, 初期弾性縦波速度 c_{L0} の 波が1つの空洞を通過する時間 $T_0 = 2a/c_{L0}$ を基準 時間とし, $\tau_{\sigma} = T_0$, $\tau_{\epsilon} = 0.5T_0$ とした.時間増分は $c_{L0} \Delta t/a = 0.125$ 及び $c_{L0} \Delta t/a = 0.0625$ の2つのパ ラメータに対して解析を行っている.なお,比較のため に、福井ら⁵⁾による従来の時間領域境界要素法(以下、 従来法)を用いた解析結果と,弾性体における場合の 解析結果をそれぞれ実線、点線で示している.ただし、 弾性体の場合の波速は粘弾性体における初期弾性波速 度を用いている.いずれの場合も、入射波が空洞前面 の A 点に到達したときを $t/T_0 = 0$ としている. 図 7 より、いずれの場合も、本手法の結果は従来法による結 果と大差ないことがわかる.また従来法では,時間増 分が小さいと解が不安定になる傾向があることが知ら れている.しかしながら,各点において,時間増分が小 さい場合の方が、より従来法の解に近づいており、時間 増分が小さくとも安定に解が求まっているといえる.

また, 粘弾性体の場合は, 空洞前面の A 点において

図8 演算子積分法のみを適用した場合 (OQBEM), 高速 多重極法も適用した場合 (FM-OQBEM) での計算時 間の比較

図98×8空洞群による入射P波の散乱解析モデル

は変位 *u*₁/*u*₀ の時刻歴はほとんど変わらないが,空洞の裏側である B 点では,弾性体の場合と比べて粘弾性の効果がはっきりとみられる.

次に,高速多重極法の効果を見るために,同様の間 題で要素数を徐々に増加させた場合の境界要素モデル に対し, 演算子積分法 (OQBEM) のみを適用した場合 と, 演算子積分法と高速多重極法を適用した場合 (FM-OQBEM) について解析を行った. OQBEM の場合では 記憶容量の制限から要素数が 512 程度までしか計算で きなかった.図8より,要素数が少ない場合はOQBEM の方が早いが,要素数が数千程度になると高速多重極 法を適用した方が早くなることがわかる.なおこの計 算は、計算効率のみを確認するために行ったものであ ることを注意しておく.実用的には要素サイズに応じ て時間増分を決定し計算を行うことから,時間増分が 小さくなれば、一般的には総ステップ数やパラメータ L 等の値も増加することにより,計算時間も増加する. しかしながら、そのような場合に対しても、高速多重極 法を用いた場合は計算時間を縮小できることは、この 検証結果より明らかである.

6.3 空洞群による粘弾性面内波動の散乱問題

次に,図9のような8×8の空洞群による粘弾性面内 波動の散乱解析を行った.全ての空洞の半径をaとし, x₁,x₂方向の空洞の中心間隔は3aとしている.1つの 空洞を64分割一定要素で離散化し,全要素数を4096, N = L = 256, $\rho = 0.95609320$ ($\epsilon = 10^{-10}$) とした. 粘 弾性体のパラメータは $\mu_R/\mu_0 = 0.85$, 初期弾性縦波速 度 c_{L0} の波が 1 つの空洞を通過する時間 $T_0 = 2a/c_{L0}$ を基準時間とし, $\tau_\sigma = 0.5T_0$, $\tau_\epsilon = 17T_0/40$ とした. ま た,時間増分は $c_{L0}\Delta t/a = 0.125$ とし, 入射波は正弦 波を粘弾性体用に修正した以下の式

$$u_{i}^{\text{in}}(\boldsymbol{x},t) = u_{0}\delta_{1j}\mathcal{F}^{-1}\left[\frac{e^{i\omega T_{0}}-1}{2i\omega} - \frac{1}{4}\left\{\frac{e^{i(\omega+\omega_{0})T_{0}}-1}{i(\omega+\omega_{0})} + \frac{e^{i(\omega-\omega_{0})T_{0}}-1}{i(\omega-\omega_{0})}\right\}e^{ik_{L}x_{1}}\right]$$
(46)

を用いた. ただし $\omega_0 = 2\pi/T_0$ である.

本解析は、従来の時間領域境界要素法では解析する ことができない.よって、時間ステップ解析には高速多 重極法を適用している.また、その際、多重極展開等に ついて、スケーリングをしない場合の式(24)-(29)を用 いた場合、多重極係数の数値が計算の途中で計算機が 扱える数値の範囲を超えたために、正しい解を得るこ とができなかった.したがって、本解析では、レベル2 以上全ての計算において多重極係数、局所展開係数に スケーリングを施している.

図 10, 図 11 はそれぞれ弾性体の場合, 粘弾性体の 場合における (a) $t/T_0 = 1.25$, (b) $t/T_0 = 6.25$, (c) $t/T_0 = 11.25$ での空洞群周辺の u_1/u_0 変位を示して いる. 粘弾性体の場合では, 変位場, そして入射波自体 も時間と共に粘弾性効果があらわれることがわかる. なお, 計算には, OpenMP を利用した 8 つのスレッド (Intel(R) Xeon(R) CPU 5310 1.60GHz を使用) によ る並列化を行っており, 全計算時間はおよそ 57 時間 38 分であった.

7. おわりに

粘弾性面内波動問題における演算子積分時間領域境 界要素法および高速多重極法の適用法について示した. 演算子積分時間領域境界要素法の定式化は従来法に比 べて極めて簡便であり、粘弾性波動問題のような閉じ た基本解が求まらないような問題にも有効である.演 算子積分時間領域境界要素法に対する高速多重極法の 適用も比較的容易である.高速多重極法のアルゴリズ ムにスケーリングを導入する必要があるものの、多重 極展開に必要な項数も比較的少なくすることができる.

今後は3次元粘弾性波動問題への拡張,実問題への 応用を行う予定である.

謝辞

本研究を行うにあたり福井大学大学院工学研究科の 福井卓雄教授,福井大学大学院生の石田貴之君から多 くのご助言を頂きました.ここに特記して感謝の意を 申し上げます.

参考文献

 片岡俊一, 片岡正次郎, 大町達夫: 観測記録と数値 シミュレーションから推定される 1995 年兵庫県南

図 10 入射平面 P 波による 8×8 空洞群周辺の u_1/u_0 変 位場(弾性体の場合) (a) $t/T_0 = 1.25$, (b) $t/T_0 = 6.25$, (b) $t/T_0 = 11.25$

部地震によるやや長周期地震動の伝播特性,自然 災害科学, Vol.16, No2, pp.125-142, 1997.

- 阿部和久,吉田裕,中村智樹:時間領域境界要素 法による三次元地震断層解析,土木学会論文集, No.471/I-24, pp.125-133, 1993.
- Rokhlin, V. : Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, pp. 187-207, 1985.
- Lubich, C. : Convolution quadrature and discretized operational calculus I, Numer. Math., 52, 1988, pp. 129-145.
- 5) 小林昭一編著: 波動解析と境界要素法, 京都大学学

図 11 入射平面 P 波による 8 × 8 空洞群周辺の u_1/u_0 の変位場(粘弾性体の場合) (a) $t/T_0 = 1.25$, (b) $t/T_0 = 6.25$, (b) $t/T_0 = 11.25$

術出版会, 2000.

- 福井卓雄,船戸慶輔:粘弾性面外波動問題の時間領 域境界要素法による解析,境界要素法論文集,12, pp. 69-74, 1995.
- 7) Greengard, L. and Rokhlin, V. : A fast algorithm for particle simulations, *Journal of Comp. Physics*, 73, pp. 325-348, 1987.
- Abramowitz, M. and Stegun, I. A. : Handbook of Mathematical Functions, Dover, 1960.
- ファン, Y.C. (大橋義夫,村上澄男,神谷紀生 共訳), 固体の力学/理論,培風館, 1970.