# 東工大レーザートンネルでの地震観測とその解析

大町 達夫 1), 井上 修作 2),水野 剣一 3)

1) 東京工業大学 大学院総合理工学研究科 人間環境システム専攻, ohmachi@enveng.titech.ac.jp 2) 東京工業大学 大学院総合理工学研究科 人間環境システム専攻, shusaku@enveng.titech.ac.jp

3) 東京工業大学 理工学部 土木工学科, mizuno.k.ab@m.titech.ac.jp

1.はじめに

近年,地下鉄や共同溝など,多くの地中構造物 が建設されており,その耐震性の確保はますます 重要になっている.一般に,地中構造物の地震時 挙動は周辺地盤の変位やひずみに支配されること が知られている.地震時に地中構造物に生ずるひ ずみを詳細的確に評価するためには,実際にひず み観測を行うことが有効と思われる.しかし実際 には,観測事例はあるものの十分とはいえず,現 実の複雑な形状をしたトンネルや地下構造物の地 震時挙動にはまだ不明な点が多く残されている.

そこで,地震に対する地中構造物の安全性を究 明するため,本研究では東工大すずかけ台キャン パスにあるレーザートンネルで地震観測を行い地 震動と地震時ひずみの関係を検討した.本論分で は,最初に観測概要と得られた観測記録について 説明し,その後,観測記録を基にひずみと地震動 の関連について調べた結果を報告する.さらにト ンネル西面でひずみが小さくなる原因について, 有限要素法解析から得られた結果を説明する.

#### 2. レーザートンネルでの地震観測

2.1 地震観測の概要

東工大レーザートンネルは,すずかけ台キャン パス内の総合研究館の脇にある.トンネル設置位 置を図1に示す.トンネル周辺の表層は盛土層, ローム混じり粘土層,粘土層,泥岩層からなり, 10m 付近から,N値 50以上を示している.PS 検 層の結果を図2に示す.

このレーザートンネルは,内空2×2mの正方形 断面をもつ厚さ25cmのコンクリート製で,長さは50m,中央西側に避難用アルコーブがあり,ト ンネル軸方向はほぼ南北(NS)方向である.

2007年3月に,トンネル南端に3成分サーボ型 速度計(水平2成分はNS成分とEW成分)とトンネ ル中央付近の断面の上下面および左右壁面トンネ



図1 キャンパス内レーザートンネルの位置<sup>1)</sup>



図 2 PS 検層の結果

| 衣1 観測されに地検と記球の一頁: |
|-------------------|
|-------------------|

| 地震発生時刻    |         | 場所      | Mj  | 震源          | i i        | 最大速度 | 宦(cm/s | )    | 最大ひずみ (µ) |      |      |      |            |            |
|-----------|---------|---------|-----|-------------|------------|------|--------|------|-----------|------|------|------|------------|------------|
| 年月日       | 時間      |         |     | 深 さ<br>(km) | 水平<br>2 成分 | EW   | NS     | UD   | 床面        | 東面   | 天井   | 西面   | 東面<br>45 度 | 天井<br>45 度 |
| 2007/06/0 | 407.00  | 検エョル如   | 4 5 | 50          | 0.07       | 0.07 | 0.05   | 0.02 | 0.45      | 0.45 | 0.00 | 0.02 | 0 42       | 0 42       |
| 2007/00/0 | 107.29  | 何工宗礼라   | 4.0 | 59          | 0.07       | 0.07 | 0.00   | 0.05 | 0.15      | 0.15 | 0.23 | 0.03 | 0.12       | 0.12       |
| 2007/06/0 | 2 14:43 | 次城県用印   | 4.0 | 50          | 0.11       | 0.10 | 0.09   | 0.05 | 0.24      | 0.24 | 0.35 | 0.04 | 0.13       | 0.23       |
| 2007/06/0 | 4 13:33 | 茨城県南部   | 4.4 | 48          | 0.06       | 0.03 | 0.06   | 0.02 | 0.09      | 0.07 | 0.11 | -    | 0.06       | 0.06       |
| 2007/06/0 | 5 13:59 | 千葉県南東沖  | 4.1 | 66          | 0.03       | 0.01 | 0.03   | 0.01 | 0.04      | 0.03 | 0.05 | -    | 0.03       | 0.04       |
| 2007/06/0 | 9 20:28 | 茨城県南部   | 4.1 | 47          | 0.03       | 0.01 | 0.03   | 0.01 | 0.05      | 0.04 | 0.07 | -    | 0.04       | 0.04       |
| 2007/07/1 | 6 10:13 | 新潟県上中越沖 | 6.8 | 17          | 1.34       | 1.08 | 1.19   | 0.46 | 4.01      | 3.91 | 3.85 | 0.37 | 1.66       | 1.26       |
| 2007/08/0 | 1 17:15 | 三重県南東沖  | 5.5 | 383         | 0.04       | 0.04 | 0.03   | 0.04 | 0.13      | 0.08 | 0.15 | 0.02 | 0.08       | 0.07       |
| 2007/08/1 | 604:15  | 千葉県東方沖  | 5.3 | 31          | 0.24       | 0.06 | 0.20   | 0.04 | 0.7       | 0.53 | 0.7  | 0.07 | 0.35       | 0.29       |
| 2007/08/1 | 608:20  | 千葉県東方沖  | 4.9 | 29          | 0.07       | 0.23 | 0.06   | 0.13 | 0.18      | 0.13 | 0.2  | 0.03 | 0.11       | 0.1        |
| 2007/08/1 | 8 04:14 | 千葉県南部   | 4.8 | 23          | 0.07       | 0.07 | 0.07   | 0.04 | 0.22      | 0.17 | 0.24 | 0.04 | 0.1        | 0.12       |
| 2007/08/1 | 8 13:36 | 千葉県北東部  | 4.5 | 24          | 0.05       | 0.04 | 0.04   | 0.03 | 0.16      | 0.12 | 0.17 | 0.02 | 0.08       | 0.07       |
| 2007/08/1 | 8 16:55 | 千葉県南部   | 5.2 | 20          | 0.14       | 0.12 | 0.13   | 0.09 | 0.35      | 0.28 | 0.38 | 0.04 | 0.18       | 0.17       |
| 2007/10/0 | 1 02:21 | 神奈川県西部  | 4.9 | 14          | 0.14       | 0.13 | 0.10   | 0.1  | 0.44      | 0.35 | 0.5  | 0.05 | 0.23       | 0.2        |
| 2007/10/0 | 603:46  | 神奈川県西部  | 4.2 | 32          | 0.25       | 0.22 | 0.19   | 0.13 | 0.54      | 0.39 | 0.66 | 0.08 | 0.49       | 0.46       |
| 2007/10/1 | 7 22:36 | 茨城県南部   | 4.1 | 55          | 0.03       | 0.02 | 0.03   | 0.01 | 0.08      | 0.06 | 0.09 | -    | 0.05       | 0.07       |
| 2007/10/2 | 9 18:13 | 埼玉県秩父地方 | 3.2 | 14          | 0.01       | 0.01 | 0.01   | 0.01 | 0.04      | 0.03 | 0.06 | -    | 0.03       | 0.05       |
| 2007/11/1 | 1 19:43 | 茨城県南部   | 4.3 | 44          | 0.05       | 0.04 | 0.05   | 0.02 | 0.11      | 0.1  | 0.17 | 0.02 | 0.07       | 0.09       |
| 2007/11/2 | 622:51  | 福島県沖    | 6   | 44          | 0.1        | 0.08 | 0.08   | 0.05 | 0.22      | 0.17 | 0.22 | 0.20 | 0.13       | 0.1        |

\*は西面から計測器を東面に移設した結果 - は値が小さいため計測不可 地震発生時刻,場所,Miは気象庁より



図3 トンネル平面図と計器設置位置(mm)

ル軸方向に,また,天井と東壁面にはトンネル軸 方向から 45 度回転した方向に,高感度ひずみ計 (引張りを正,圧縮を負)が計6個設置され,サンプ リング周波数100Hzで常時観測中である.トンネ ル平面図と計器設置位置を図3に示す.

## 2.2 観測記録例

2007年5月~2008年1月末までに観測された 18の地震について,震源情報と得られた観測記録 の最大値の一覧を表1に,観測地点と震央位置を 図4に示す.18地震の内,水平速度(2成分合



図4 観測地点と観測された地震の震源位置

成)0.1cm/s 以上を観測した地震は7つである.最 も大きい水平速度値(2 成分合成)は 2007/7/16 の新 潟県中越沖地震(M6.8 震源深さ 17km)時に観測さ れた 1.34cm/s であり,最大上下速度値は 0.46cm/s, 最大地震時ひずみ値は底面 4.01 µ, 天井 3.85 µ, 東面 3.91 µ, 西面 0.37 µ, 東面 45 度 1.66 µ, 天井 45 度 1.26 µ であった(µは 10<sup>-6</sup>).このときの時刻 歴波形を図 5 に示す.この記録のように,西面の 地震時ひずみは著しく小さな値(床面に対して約 0.14 倍)を示すことが一つの特徴と言える.



#### 3. 軸方向ひずみと地震動との関係

従来から,単純な水平地盤ではトンネル軸方向 ひずみ は地震動速度 V との相関性が高く,大ま かに次式のようにあらわせることが知られている <sup>2)</sup>.

=V/C(C:一定値)・・・式(1)

これを踏まえ、トンネル軸方向ひずみを(床面のひ ずみ+天井面のひずみ)/2 で求め、それと地震動速 度 V との相関性について検討した.

水平2成分速度記録を用いて,S波到達から波 形の包絡が最大値の半分となるまでの時間範囲に ついて,速度と軸方向ひずみの相関性を調べた結



図 9 解析モデル概要(左:全体,右:トンネル中央切断)



果を図 6 に示す. 図中横軸の角度は NS 方向を 0 度とし,反時計方向に回転させた角度である.7/16 と 10/1 の地震では共に NS 方向との相関が大きい が,相関係数が逆符号であった.これは二つの震 源位置がトンネルに対して南北逆方向にあったこ とによると思われる.

図 7 に NS 方向の最大速度値と最大軸方向ひず み値の関係を示す.両者はほぼ線形関係にあり, 図中に示したように二つの最大値の間には式(2) の関係が認められる.

### 4. アルコーブの影響

図5から明らかなように,西面の地震時ひずみ が著しく小さいことを,全地震について調査する ため,得られた地震時ひずみ記録から求めた各面 と床面の最大値の比を図8に示す.西面の地震時 最大ひずみ比はどの地震でも0.2以下となってい る.念のため,計器の作動状況を検査するため西 面の計測器を東面に移設して測定した.11/26の最 大ひずみ比はその結果であり,これから計器に異 常がないことが確認された.トンネル西面の軸方 向地震時ひずみが他の3面より著しく小さい原因 は,西側にあるアルコーブの影響と思われる.

そこで有限要素法による数値シミュレーション

解析をおこなった.解析モデルは図9に示すよう に、一様な物性値の20mの立方体にトンネル中央 部の形状をくりぬいたモデルである.上下面は上 下方向固定,トンネル軸直交方向の側面は軸直交 方向固定とし、トンネル軸方向の側面に一様な分 布荷重を入力して静的解析を行った.軸方向ひず みの分布を図10に示す.西面のアルコーブ付近で は軸方向ひずみが明らかに著しく小さい.静的解 析ではあるが、トンネル形状(アルコーブ)の影響 で局所的に西面のひずみが小さくなる状況が示さ れており、トンネル西面の地震時ひずみが小さい ことも同様な影響によるものと考えられる.

#### 5.まとめ

レーザートンネルで地震時のひずみおよび速度 を一年間観測し,実測データを蓄積し解析した. その結果,トンネル中央西側のアルコーブによっ て西面の地震時軸方向ひずみ量が格段に低減され ることが明らかになった.また,軸方向ひずみ は NS 方向(トンネル軸方向)の速度 V との相関 性が高く,両者の最大値には式(2)の線形関係が認 められた.この物理的理由の解明を含め,今後も 地震観測を継続し,更なる検討をしていく必要が ある.

謝辞:地震観測では山中浩明准教授や東京測振(株), 数値解析では小島康弘氏(M2)の協力を得た.記して 謝意を表する.

参考文献

 1)東京工業大学 施設運営部ホームページ: http://131.112.67.37/InstitutionMng/PDFprint01.aspx
2)中村 正博ほか:地中構造物の実測地震時ひずみに関する定量的研究 土木学会論文報告集 第 320 号 pp.35~45 1982