プラスチック光ファイバ OTDR センサの実装方法と歪み検出特性の検討

中村健太郎(1)

(1) 東京工業大学 精密工学研究所 knakamur@sonic.pi.titech.ac.jp

1.はじめに

光ファイバセンサは、光ファイバに沿った長大な距 離について、ひずみや温度を連続的または離散的 に多数点測定できるという、他の方式では実現しにく い特徴を有している。BOTDR 技術[1]や FBG センサ 技術[2]の進展により、光ファイバひずみセンサを建 物や道路、橋、斜面、トンネルなどに埋め込むフィー ルドテストが国内外で行われている[3][4]。このような センサの役割のひとつとして、地震により生じたダメ ージの検出がある。これは、地震発生後に、その建 物や構造物が安全に使用できるか否かを短時間で 判定をするために重要である。現在では、例えば橋 梁などを人力で検査するために、鉄道の運転再開ま でに時間を要している。

光ファイバ分布型センサのほとんどは通信用のシリ カガラスファイバを利用したもので、その低損失性か ら、10 km 以上の長大な距離の測定が可能である。 実用上は、光ファイバをどのように実装するかが問題 になるが、用途に応じて多様な方法が開発されつつ ある。例えば、コンクリート埋め込みに適した構造のケ ーブル形状なども開発されている。一方、現状では 一般に光ファイバに生じたひずみ分布を計測・解析 する装置は高価で、小規模な建築物への適用は経 済的に困難である。この装置は常に通電状態として モニタリングを続け、データを記録・蓄積する必要が ある。

筆者らは、取り扱いが容易なプラスチック光ファイ バ(POF)を分布型センサとして利用することを目的に、 POFに曲げや側圧、ねじれ、引っ張り、温度変化など の外乱を与えた場合の OTDR 応答の変化を実験的 に検討している[5][6]。現在量産されている PMMA による POF では、1550 nm 帯のシリカガラスファイバ の伝送損失約 0.2 dB/km に対して、670 nm 帯で約 0.2 dB/m という極めて大きな伝送損失を有するので [7]、測定可能距離は 100 m 程度である。一方、コア 径 0.98 mm と大径のステップインデックス型であるの で、モード分散によるパルスの広がりが大きく、空間 分解能が限られるという制約がある。しかし、取り扱い の容易さや低コストで接続できるなどの利点もあり、 小規模構造物を対象とした普及型のセンサとしては 利用価値があるのではないかと考えられる。また、シ リカガラスファイバが 5%程度の引っ張りひずみで破 断するのに対して、POFは100%近い引っ張り歪みで も破断せずに光伝送を行える。このことは、ひずみセ ンサとして建築・土木構造物に利用する際には大き な利点となる。また、このような大ひずみでは、塑性 変形が発生するが、外力を取り去った後でも歪みが 残留し、反射や伝送損失などの光学特性の変化も残 留する。筆者らは、この性質をメモリ作用として積極 的に利用すれば、新しい機能を有した分布型センサ が実現できるのではないかと考えている[8]。 すなわ ち、光ファイバさえ敷設しておけば、高価な解析装置 を必ずしも常に光ファイバに接続しておく必要は無く、 地震等の後で解析装置を携帯して巡回検査を行うと いう方法をとることができる。ひとたびその構造物が 大きな変形を受ければ、その変形が元に復帰したと しても、POF にはメモリ効果によりひずみが記録され るからである。

本稿では、木造構造物を対象に POF の設置方法 を考案した。さらに、この方法によって設置した POF による変形の検出特性を実験的に検討した。

2. POFのOTDR装置

Fig. 1 Photon-counting OTDR syserm.

市販されている POF 用 OTDR 装置は多くはないが [9]、今回は SCIENTEX 社の OTDR-2000POF[10]を 利用した。これは、フォトンカウンティングを光検出に 利用したもので、通常の OTDR 装置とやや異なった 構成となっている。測定原理を Fig.1 に示す。POF の 波長窓である波長 650 nm の半導体レーザを光源と し、パルス幅 5 ns のパルス光を POF の一端から入射 する。逆散乱光をフォトンカウンタで計数する。パルス 光を何度も入射し、そのたびごとのフォトン時系列パ ルスを記録、積算する。その結果を各時間毎のパル ス数として表示すると、通常の OTDR と同様の結果が 得られる。装置としての時間読み取り精度に対応する 空間分解能は 10 mm 程度であるが、使用しているパ ルス幅が OTDR の表示上では 1 m に相当する。また、 使用した POF の帯域幅はファイバ長 50 m で 40 MHz 程度なので、パルス幅はさらに広がる。この広がりは 入射 NA、伝搬時のモードにもよるが、100 m 長の POF の端面からのフレネル反射の OTDR 応答では 2 ~3 m のパルス幅となっている。したがって、OTDR の空間分解能はこの程度と考えられる。また、使用装 置のダイナミックレンジは 20dB 程度であり、最大距離 120 m 程度までの測定が可能であった。これらより、 約 100 m にわたって 50 点程度の分布測定が可能で あると考えられる。

Fig. 2 Photo of the instrument, OTDR-2000, Scientex inc., used in the experiments.

3.使用した POF の仕様

今回はステップインデックス型の標準的な POF のひ とつとして、三菱レイヨン社の *Eska* を実験に用いた [11]。コア径 0.98 mm の PMMA によるもので、クラッ ド外径は 1 mm である。コア屈折率は 1.49、クラッド屈 折率は 1.402 であり、NA は 0.5 である。2.2 mm の被 覆を有したケーブル型の GH4001-P を用いた。伝送 損失は 0.17 dB/m である。

4 . POF の機械的変形による OTDR 応答と反射 量・損失量の定義

POF ケーブルに引っ張り、曲げ、側圧、ねじり等の 機械的変形を与えると、OTDR 応答に変化が生じる。 たとえば、曲げを与えた場合、Fig.3 に示すような応 答が得られるが、ここで、「反射量」と「損失量」を Fig.4 のように定義する。すなわち、OTDR 応答のピ ークの高さ(dB)を反射量、注目部を通過したことによ る逆散乱光レベルの低下分(dB)を損失量とする。

Fig. 3 OTDR responses to a bend in POF cable.

Fig. 4 Definition of the reflection and loss.

5.木材結合部への POF 設置器具の検討

次に、Fig.6のような木造住宅などに用いられる四角 断面の木材どうしの接合部に POF を設置するための 器具について検討した。全構造の変形による2つの 木材の接合部の開き量を POF により検出できるか、 また、変形が復帰した後で POF のメモリ効果によって その変形があった事実を検知できるかなどを実験的 に検討する。この際、次のようなことを考慮した。

- 1) ケーブルを木ねじ等で容易に固定可能であること。
- 2) 固定による OTDR 応答への影響が小さいこと。
- ファイバが滑らず、木材結合部の変形をファイバ に伝達すること。

ここで、(1)は現場での施工性から当然必要である。 (2)については、固定によって POF に側圧などが印加 されると、それによって反射、損失などが生じる可能 性があるが、これを最小にする必要がる。ここでは、 測定系のダイナミックレンジが約 20dB であること、後述のように、空間分解能から、ファイバ全長 100 m 中 に最大 20 点ほどの測定点が設けられることから、1 箇 所の固定による許容損失を 1dB とした。

Fig. 5 Test joints of two wooden beams.

Fig. 6 Dislocation of the joint to be detected.

Fig. 6 のような変形を検出するために、Fig.7 のよう な金具で POF ケーブルを固定する。アルミニウム製 の上板 (Top plate)とスペーサ (Spacer) で POF ケーブ ルを挟むもので、スペーサの厚さdをPOFケーブルの 外被直径よりもわずかに小さくして上板を木ネジで固 定することで、引っ張り力が加わっても滑らないように している。OTDR 応答への固定の影響を最小にし、 変形を POF に滑り無く伝えることができるスペーサ厚 さんと固定圧がかかる長さ L を実験的に検討した。な お、上板の厚さは3 mm である。まず、スペーサ厚さ dを変化させて、OTDR 応答の損失を測定した結果 を Fig.8 に示す。これより、L=28 mm、56 mm の両方と もスペーサ厚さdが 1.7 mm 程度までは損失が生じな いことがわかる。しかし損失が生じる厚さになると、 L=56 mm のときの値が L=28 mm のときと比べて損失 が dB 値で2倍近くになっていることがわかる。

Fig. 7 Method for fixing the POF cable.

Fig. 8 Loss as a function of the spacer thickness of the fixing tool.

一方、二つの固定器具の間隔 Sを 20 mm として 2 点を固定した場合に Fig.6 のような変形を加えて、変 形量(間隔 S = 20 mm に対する伸びた率[%])と OTDR 応答の反射量の関係を調べた結果を L=28mm について Fig.9 に、L=56 mm について Fig.10 に それぞれ示す。これより、いずれの L でもスペーサ厚 さ d が 1.3 mm 以下であれば反射量は同様で、これよ りも大きいと反射量は小さくなることがわかる。つまり Lを長くしても完全に固定可能なスペーサ厚さは変わ らない。Fig.8 ~ 10 の結果から固定損失の少ない L=28 mm を採用する。また、この場合の固定による 損失約 0.7 dB を許容して、スペーサ厚さ dを 1.3 mm とした。この損失量は先に述べた一ヶ所あたりの許容 最大値 1dB を下回っている。

このように固定圧がかかる長さL=28 mm、スペーサ 厚さd=1.3 mmとして以後の実験を行うものとする。

Fig.9 OTDR response (reflection) vs. the longitudinal displacement applied to the POF cable for different spacer thickness in the fixing tool. *L*=28 mm.

Fig.10 OTDR response (reflection) vs. the longitudinal displacement applied to the POF cable for spacer thickness depth in the fixing tool. L=56 mm.

6.空間分解能の検討

前節で述べた固定器具、固定条件(L=28 mm、d= 1.3 mm)の場合について、2 つの変形場所間の距離 がどれくらい小さくとも分離して検出できるか、すなわ ち空間分解能について評価する。パルス幅 5 ns の場 合、POF 中の光速を $2 \times 10^8 m/s$ として空間分解能 は 1 m 程になるが光ファイバのモード分散により、測 定光のパルス幅が広がることが考えられる。光源から 比較的近い変形場所として、光源から 15 m の場所と そこから D(m)離れた場所に Fig. 11 のように 2 つの 固定位置を設けて OTDR 応答を測定した。それぞれ の変形量は共に 100 %の引っ張り歪とした。

二点間の間隔 D を 5 m、3 m、1 m とした場合の
OTDR 応答を Fig.12 に示す。 変形量を OTDR 応答
の反射量と損失量から測定できるということを位置分

解能の条件とすると、5 m が OTDR 応答を分離可能 となる最小間隔であるといえる。これより、100 m のフ ァイバケーブル中に 20 点の測定点を配置できること になる。

Fig. 11 Experimental setup for estimating the spatial resolution.

Fig.12 OTDR responses for three different interval D between two strained points.

7. 引張りに対する応答とメモリ効果

曲げ変形に対して、変形量がある一定値を越えると、 外力を解放しても反射量や損失量が0dBにもどらな いメモリ効果が観測された。構造ヘルスモニタリング への応用では、引っ張りひずみが重要であるので、 引っ張りひずみに対するメモリ効果の例を Fig.13 に 示す。

軸方向の引っ張り力を加えた場合のOTDR応答に ついて、反射量を縦軸にとって示している。ひずみを 増やしていった場合を実線で示す。さらに、大きなひ ずみ(60、70、80%)から引張力を解放した場合(破 線)、ひずみが残留しているが、このときの反射量も プロットしている。このように大きなひずみでは、外力 を取り去っても光反射が残っていることがわかる。こ

れを著者らは「メモリ効果」と呼んでいる。

次にメモリ効果の持続時間について調べた。Fig.14 は5節で決定した測定条件で100%の伸び変形を与 え、"外力を加え変形量を保った場合"と"外力を取り 除いた場合"それぞれについて時間(対数目盛り)に 対する反射量の変化を示したものである。いずれの 場合も変形直後から反射光量が減少していく。しかし、 実験の範囲では120時間(5日間)は十分検出可能 な応答が保持されることが分かった。

また Fig14 の結果から"力を取り除いた場合"は反 射量が小さいが、どの程度小さな伸び率まで測定可 能であるかを考察する。測定値のばらつきなどを考 慮し 0.4 dB を測定の限界と考えることとする。Fig.15 には各伸び率に対する力を取り除いた直後 (Time=0)の反射値を示す。今回の実験において"外 力を取り除いた場合"5 日後の反射量が Time = 0 時 の値の 35%であったことを用いると、5 日後でも 0.4 dB 以上になるには Time=0 時に 1.1 dB 以上の反射 量が必要となり、これを Fig.15 の結果に当てはめる と70%以上の伸び率のとき、メモリ効果を利用可能で

Fig.18 Transition of the OTDR responses (Reflection) for tensile strain in five days.

Fig.19 Reflection just after the external force is released.

8.まとめ

プラスチック光ファイバを分布型センサとして用いる ことを目的とし、木材への固定方法、POF センサの特 徴であるメモリ効果や分解能についての実験を行っ た。地震等により一過性のひずみが生じた場合、従 来のセンサでは常時測定記録を行っていないと、ひ ずみ発生の事実を検出できないが、メモリ効果を利 用することで、時間経過した後の測定でもひずみが 発生した事実を知ることができる。今回の実験では 5 日間以上のメモリ保持を確認できた。このことは、災 害時の停電などにも対応可能できることを示すと同 時に、高価な測定装置をファイバセンサに常時接続 していなくてもよいことを意味しており、メモリ効果を 活用すると、従来にはない光ファイバセンサの利用 方法が広がると考えられる。

プラスチックファイバは損失が大きく、また低速であ るので計測可能距離、分解能は限定されるが、今回 の実験から 100 m の範囲内で 20 点程度(5m 間隔) の測定が可能であると考えられる。

謝辞

実験を担当した学部4年福本拓司君に感謝します。

参考文献

- [1] 成瀬, "BOTDR によるひずみ分布センシング," OPTRONICS (2000), No. 3, pp.144-148.
- [2] Y-J. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8 (1997), pp.355-375.
- [3] Naruse H 2003 Brillouin optical time-domain reflectometry system for monitoring structures: development and field test *Proc. OFS-16*,SS-7 514-517
- [4] 岩城,"建設分野における光ファイバセンシングの 現状と未来,"第 32 回光波センシング技術研究 会, LST32-11, pp.79-84, Dec. 2003.
- [5] R. Husdi, K. Nakamura and S. Ueha, "Sensing characteristics of plastic optical fibers measured by using OTDR,"第31回光波センシング技術研究 会, LST31-13, pp.83-88, June 2003.
- [6] R. Husdi, K. Nakamura and S. Ueha, "Sensing characteristics of plastic optical fibers measured by optical time-domain reflectometry", Meas. Sci. Technol. 15(2004)1553-1559.
- [7] W. Daum, J. Krauser, P. E. Zamzow, O.Ziemann,"POF Polymer Optical Fibers for Data Communication", Springer, Berlin, p.76, 2002.
- [8] 中村, "プラスチック光ファイバによる OTDR セン サのメモリ効果"第 33 回光波センシング技術研究 会, LST33-7, pp.45-52, June 2004.
- [9] http://www.luciol.com/
- [10] http://www.scientex.co.jp/
- [11] http://www.pofeska.com/pofeska.htm