在来軸組戸建木造住宅を対象とした 2層木質制振架構の動的挙動に関する実験研究

○笠井 和彦¹⁾,坂田 弘安²⁾

1)東京工業大学 応用セラミックス研究所 建築物理研究センター, kasai@serc.titech.ac.jp
2)東京工業大学 応用セラミックス研究所 建築物理研究センター, hsakata@serc.titech.ac.jp

1. はじめに

我国では戸建木造住宅の8割強が在来軸組構法で 作られており、既存不適格戸建木造住宅は全国に多 数存在している。これら既存不適格建物の耐震補強 および在来軸組構法による新築戸建木造住宅の耐震 性能向上に向けて、パッシブ制振技術の2層在来軸 組戸建木造住宅への合理的な導入方法を検討するこ とは、重要な意味を持つ。

これまでに木質制振壁の動的載荷実験¹⁾、2層分 の質量を考慮した1層木質制振架構の振動台実験²⁾ を行ってきた。本研究では2層木質架構に対して粘 弾性・摩擦ダンパーの制振壁と構造用合板の耐力壁 を組み込み、振動台実験によりその耐力要素の損傷 レベルや減衰等の動的挙動を把握することを目的と する。

2.2層木質制振架構の振動台実験概要

2.1 試験体の設定およびセットアップ

図1にセットアップを示す。試験体は在来軸組構 法による2層戸建木造住宅の耐力要素の動的挙動を 調べる目的で製作したもので、1辺が2730mmの立 方体を鉛直方向に2つ積層した形状となっている。 木質フレームはスプルース集成材の柱(105×105mm)、 欧州赤松集成材の土台(105×105mm)・桁(105× 180mm)、構造用合板の床(28mm 厚 N75 釘@75)で構 成される。

加振方向の中央に耐力要素を配置し、その他の構 面は層せん断力を負担しないように、接合部をピン に近い形(かすがい+短ほぞのみ)とした。また、1 層の階高中央以上の質量が既往の研究²⁾と等しく となるように錘の重量を決定した。すなわち、1 層 の設計せん断力を全重量と地震層せん断力係数 0.2 の積とし、壁倍率 2 をもつ壁要素が 2P 存在する場 合に設計せん断力となるように重量を定めた。ここ に、壁倍率とは層間変形角 1/120rad.に対応する荷 重を壁単位長さ 1m あたりのせん断耐力 1.96kN で除 した値と定義した。1 層に対する 2 層の質量比 α (m2 / m1)は総2階・重い屋根を想定した場合の設 計用の床重量を用いて求め、0.9 とした。また、耐 カ要素の柱上に配置された錘は、柱の引き抜けに対 して影響を与えると考えられる。そこで、耐力要素 の柱の長期軸力が実在の住宅とほぼ等しくなるよう に(1,2 層柱の長期軸力は 3.2kN と 1.6kN)耐力要素 の柱上の錘の量を決定し、残りの錘は耐力要素の柱 に対する影響が少ない外側の構面上に配置した。さ らに、加振直交方向の構面にはねじれを防止するた めに、断面寸法 45×90mm の筋交いを取り付けた。 ねじれ防止用の筋交いは、中央構面の柱に対して影 響を避けるために、5mm のクリアランスを設けて取 り付けた。

2.2 試験体パラメータ

試験体一覧を表1に示す。表中の壁量とは、各壁 要素の壁倍率にその長さを乗じたものの和である。 2 層部分の構造用合板に関しては村上・稲山式 3) を用いて釘の本数によって剛性および耐力を調整し たため、調整時の倍率を考慮した壁量を表記してい る。各試験体に関し、以下に述べる。なお、WP,W は Wood panel、K は K 型ブレース、V は Viscoelastic damper、F は Friction damper を意 味する。 表1 試験体一覧

							11 -0. 011	
No) .	1	2	3	4	5	6	
試験体								
試験	体名	2WP-1.6WP	2WP-1.2WP	2FK-1.6WP	2VK-1.6WP	2VK-VK	2VW-VW	
括粘	2層	構造用合板両面	構造用合板両面	構造用合板両面	構造用合板両面	粘弾性ダンパーK型	VK + 1.2WP	
作里天只	1層	構造用合板	構造用合板	摩擦ダンパーK型	粘弾性ダンパーK型	粘弾性ダンパーK型	2VK + 2WP	
	2層	4.8 × 1P 3.6 × 1P		3.6 × 1P	3.6 × 1P	5.0 × 1P	8.6 × 1P	
空里了	1層	3.0×2P	3.0 × 2P	6.0 × 2P	5.0 × 2P	5.0×2P	8.0×2P	
$\beta = k_2 / k_1$		0.58	0.55	0.39	0.77	0.48	0.44	
T ₁	[s]	0.28	0.28	0.26	0.30	0.35	0.26	

(1)1,2層とも構造用合板の試験体

・2WP-1.6WP:1層に 1P あたり壁倍率 3 の構造用合 板 2 級 9 mm 厚(釘 CN50,外周部@100 mm,中間部 200 mm)を 2P 配置した。2 層は 2 層の壁量が比較的大き い場合を想定し、1 層と 2 層の剛性比β(=k2 /k1) が 0.8 となるように、構造用合板両面張りの釘の本 数を調節した。柱脚部には引き寄せ金物、柱頭部に は 2 枚ハンチ型金物 2 つを用いた。

・2WP-1.2WP:1 層は上述した 2WP-1.6WP 試験体と 同様である。重い屋根・総2階の場合、1層と2層 の必要壁量の比は 0.6 程度となることから、2層の 耐力要素は通常の構造用合板両面張りより釘の本数 を少なくし、 β =0.6 となるように調節した。接合 部は 2WP-1.6WP 試験体と同様である。

(2)1層が構造用合板、2層が制振壁の試験体

・2FK-1.6WP:1 層は、壁倍率 6 相当の性能を見込んだ摩擦ダンパーK 型を 2P 配置した。柱脚接合にはブレースと一体の引き寄せ金物と内使いL型金物 2 個を併用した。柱頭接合には内使いL型金物を 2 個用いた。2 層は 2WP-1.6WP 試験体と同様である。

• 2VK-1.6WP:1 層は、壁倍率 5 相当の性能を見込んだ粘弾性ダンパーK 型を 2P 配置した。ダンパー以外の詳細に関しては 2FK-1.6WP 試験体と同一である。

(3) 1,2 層とも制振壁の試験体

・2VK-VK:1層は2VK-1.6WP試験体と同一である。
2層も、1層と同様の制振壁を壁を中央に配置した。
・2VW-VW:2VK-VK試験体の上から1,2層とも構造
用合板(2級9mm厚)を配置した。間柱は存在しないが、釘の本数を調節することで、2WP-1.2WP試験体の構造用合板と同等の剛性および耐力を付加した。

2.3 計測

図2に計測位置を示す。振動台上に設置した計測 フレームから、振動台に対する試験体の相対変位を 計測した(図 2(a)参照)。式(1)から 1,2 層の層間変 位 u_1 , u_2 を算出し、振動台、試験体土台、2 層の床、 2 層の天井の加速度を用いて、式(2)から 1,2 層の 層せん断力 F_1 , F_2 を算出した。試験体土台の加速度 を用いて式(3)の関係を確認できたことから、層せ ん断力の導出は正しいことがわかる。変位計および 加速度計は加振直交方向に 3 つ配置した。図 2(b) に平面的な配置の例として2 層床レベルを示す。こ こで式(4)の関係が確認できたことから加振中の試 験体にねじれは生じていないことがわかる。なお、 データ整理の際には中央の値のみ用いている。

1D-0 01m

$u_2 = d_2 - d_1$	$u_1 = d_1 - d_0$	(1)
$F_2 = m_2 \times a_2$	$F_1 = F_2 + m_1 \times a_1$	(2)
$\Sigma F_{load} = F_1 + m_0 \times a_0$		(3)
$a_{1\rm m} = a_{1\rm m} = a_{1\rm m}$	$d_{1\mu} = d_{1\mu} = d_{1\mu}$	(4)

摩擦ダンパーを持つ試験体では高力ボルトにボル トゲージを挿入し、事前にボルトの歪と軸力の関係 を調べることで、ボルト軸力を計測した。粘弾性ダ

図2 計測位置

ンパーを持つ試験体では粘弾性体に熱電対を挿入し、 粘弾性ダンパーの温度を計測した。引き寄せ金物を 持つ柱に関しては、引き寄せボルトの軸力をセンタ ーホール型ロードセルで計測した。

2.4 加振

表 2 に入力地震動 を示す。入力として 1952Taft 波 EW, 1995JMA 神戸波 NS を用いた。最大加速 度 0. 2g の Taft 波と 神戸波を入力後、 0. 6g 神戸波、0. 2g 神戸波の 2 回目を入 力し、引き寄せボル トを締め直した後に 神戸波の原波(0. 83g 神戸波)を入力した。

売 2	٦	, 1	言言	h —	텉
ব⊽∠	へ	リル	「辰玉	<u> </u>	臣

No.	Name	最大 加速度(g)								
1	W1	0.1								
2	0.2gTaft波	0.2								
3	W2	0.1								
4	0.2g神戸波(1回目)	0.2								
5	W3	0.1								
6	0.6g神戸波	0.6								
7	W4	0.1								
8	0.2g神戸波(2回目)	0.2								
9	W5	0.1								
引き寄せボルト締め直し										
10	W6	0.1								
11	0.83g神戸波(原波)	0.83								
12	W7	0.1								

各入力後に、土台の加速度 a₀から求めた変位応答 スペクトルおよび擬似加速度応答スペクトルが、目 標のスペクトルと 0.1~1.0 秒の固有周期の範囲に おいて、変動係数で 5%以内であることを確認した。

また、それぞれの前後で 0.1g ホワイトノイズ波 (適用範囲は 0.1~30Hz)を入力した。ホワイトノイ ズ波による応答は非常に小さく、よって線形と仮定 できると考え、試験体土台・2 層の床・2 層の天井 における伝達関数と概ね一致する伝達関数をもつ線 形 2 質点系の 1 次の固有周期と減衰定数を、試験体 の小振幅時における 1 次の固有周期・減衰定数 T₁, h₁と定義した。

最初の加振(ホワイトノイズ1回目)前に、引き寄 せ金物の引き寄せボルトの軸力は 10kN に調節して 加振を行った。途中の引き寄せボルトの締め直しは 0.6g 神戸波のような大地震を経験した後に行った。 2WP-1.6WP 試験体に関しては神戸波原波の加振前に、 摩擦ダンパーのボルトを一旦緩め、残留変形を解除 した。2WP-1.6WP 試験体に関しては試験体の倒壊の 可能性を危惧し、神戸波原波は入力していない。ま た、2VW-VW 試験体に関しては神戸波原波を 2回入 力した。粘弾性ダンパーを持つ試験体に関しては、 各加振毎に粘弾性体の温度を 20℃に調節して加振 を行った。

3.2層木質制振架構の振動台実験結果

3.1 層せん断力と層間変位の関係

層せん断力と層間変位の関係を図 3、層間変位の 最大値を表 3 に示す。

1,2 層とも構造用合板で構成される試験体(図 3 上 2 試験体)では、神戸波 0.2g 1 回目の入力ではい ずれも 1/240rad.以内に納まっている。しかしなが

ら、0.6g 神戸波の入力ではいずれもスリップ履歴 を示し、その後の 0.2g(2 回目)の入力では剛性が下 がり、0.2g1回目の加振よりも変形が大きくなった。 外観上の損傷としては構造用合板に打ちつけた四隅 の釘が僅かに抜け出す(写真 1(a))程度であった。 神戸波原波の入力では 2WP-1.6WP 試験体の 2 層は構 造用合板の片側半分の釘がほとんど抜け(写真 1(b))、最大で約 1/15rad.まで変形したが、倒壊は しなかった。2WP-1.6WP 試験体において、0.6g 神戸 波の入力では1,2層の最大層間変位は2層の方が1 層に対して 1.5 倍程度であるのに対し、神戸波原波 の入力では2層が1層に対して2倍以上変形した。 このことから、複数回の地震を経験すると、損傷の 大きい方に変形が集中することがわかる。2WP-1.6WP 試験体は主に1層が損傷したが、2WP-1.2WP 試験体は2層が損傷する結果となった。僅かな剛性 比の差で変形の大きくなる層が変化したことから、 変形モードは1,2層の剛性比に敏感であることがわ かる。

1 層が制振壁、2 層が構造用合板で構成される試 験体(図3中2試験体)では、摩擦ダンパーを有する 層(2FK-1.6WPの1層)はダンパーの滑り荷重に対応 した層せん断力で頭打ちとなるが、この壁以外に剛 性を持つ要素が存在しないため、加振終了後に変形 が約 1/120rad. 残留した。粘弾性ダンパーを有する 層(2VK-1.6WPの1層)は 0.6g 神戸波の入力時に最 大で約 1/80rad. 変形するものの、その後の 0.2g(2 回目)の入力でも1回目とほぼ同程度の変形に留ま っていることから、架構の損傷は少ないといえる。 また、2 層の構造用合板は両方ともスリップ履歴と なり、剛性が著しく低下した。加振終了後には、 2FK-1.6WP 試験体は1層で約1/46rad.の残留変形が 生じ、2層は四隅の釘が僅かに抜け出していた(写 真 1(c))。2VK-1.6WP 試験体は 1 層の損傷は見あた らなかったものの、2層では釘が全般的に 1cm 程度 抜け出していた(写真1(d))。

粘弾性ダンパーが全ての耐力要素に入った試験体 (図3下2試験体)では、0.6gの入力で2VK-VK試験 体は2層が1/75rad.まで変形したが、その上から

表3 層間変位の最大値

(変形角は層間変形角を 1/x の形式で表した時の x)

		0.2gTaft		0.2g神戸		0.6g神戸		0.2g神戸(2)		神戸原波	
試験体	層	最大値	変形角	最大値	変形角	最大値	変形角	最大値	変形角	最大値	変形角
		mm	rad	mm	rad	mm	rad	mm	rad	mm	rad
2W/D-1 6W/D	2	5.2	525	5.5	496	36.9	74	22.7	120		_
2007 1.0007	1	6.1	448	8.0	341	70.4	39	53.1	51		
214/0-1 214/0	2	5.5	496	6.7	407	64.9	42	37.1	74	184.2	15
2009-1.2009	1	5.8	471	6.4	427	53.2	51	35.2	78	80.3	34
	2	5.2	525	6.0	455	43.4	63	23.4	117	91.9	30
2FK-1.0WP	1	3.0	910	3.2	853	41.0	67	29.8	92	101.0	27
2)///_1 6///D	2	4.6	593	5.7	479	52.8	52	26.9	101	107.9	25
2010-1.000	1	5.7	479	6.6	414	32.0	85	9.5	287	37.3	73
2)///_///	2	8.0	341	7.7	355	35.3	77	11.4	239	56.5	48
201-01	1	5.7	479	6.1	448	28.6	95	10.3	265	41.5	66
2)////_)////	2	4.9	557	5.3	515	23.4	117	7.4	369	34.3	80
2000-000	1	3.0	910	3.3	827	15.7	174	5.0	546	22.3	122

図3 層せん断力と層間変位の関係

合板を貼ることで変形は 1/120rad. に留まった。神 戸波原波の入力では 2VW-VW 試験体は 2 層が 1/120rad. を超えて変形するものの、その後に再び 神戸波原波を入力しても、変形レベルはほとんど変 わらなかった。このことから粘弾性ダンパーと並列 に付加した構造用合板が効率的に機能していること がわかる。加振終了後の試験体は、両試験体とも特 に外観上の損傷はなかった。

(b) 神戸波原波入力後の

2WP-1.2WP 試験体の2層

(a) 0.6g 神戸波入力後の 2WP-1.6WP 試験体の1層

(d) 神戸波原波入力後の 2VK-1.6WP 試験体の2層

写真1 加振終了後の合板壁における釘の抜け出し

3.21層と2層の剛性比

2FK-1.6WP 試験体の2層

壁量と 1・2 層の剛性比 β (=k₂/k₁)を表 4 に示す。 全ての試験体で壁量 (実験値) が設計値の壁量を上回 っていることがわかる。2WP-1.6WP, 2WP-1.2WP 試験 体では、 β (=k₂/k₁) が 0.8 と 0.6 となるように釘の 本数を調整したが、ホワイトノイズの入力結果では 二つの試験体に差が生じていない。これは合板と木 質フレームが摩擦により一体化し、最大加速度 0.1g のような小さな入力では摩擦の影響だけが現 れているためと考えられる。0.2gTaft 波から算出 した剛性比では両試験体に差が生じていることから もそれは明らかである。また、1 層の引き寄せ金物 は基礎を想定した剛の H 鋼を反力としているのに対 し、2 層の引き寄せ金物は 1 層の柱および梁を反力 としているため、同仕様の耐力要素では 2 層の剛性 が想定より小さくなり、 β は小さくなっている。

表4 壁量と1・2層の剛性比

	想定	壁量		壁量(実験値)		W1による			0.2gTaft波による		
試験体	β	1層	2層	1層	2層	k1	k2	β	k1	k2	β
	-	[m]		[m]		[kN]		- [k		:N]	-
2WP-1.6WP	0.80	6.0	4.8	11.1	8.3	2.80	1.62	0.58	1.95	1.35	0.69
2WP-1.2WP	0.60	6.0	3.6	12.6	7.6	2.83	1.56	0.55	2.10	1.19	0.56
2FK-1.6WP	0.60	8.0	4.8	11.8	8.4	3.80	1.48	0.39	3.62	1.24	0.34
2VK-1.6WP	0.48	10.0	4.8	16.9	7.7	1.70	1.30	0.77	1.55	1.11	0.72
2VK-VK	0.50	10.0	5.0	17.5	7.3	1.47	0.71	0.48	1.50	0.60	0.40
2VW-VW	0.54	16.0	8.6	23.7	11.5	3.23	1.41	0.44	3.35	1.34	0.40

3.3 ダンパーの挙動

図 4 に 2FK-1.6WP, 2VK-1.6WP, 2VK-VK, 2VW-VW 試験体のダンパー可動方向力 とダンパー変位の関 係を示す。1 層に関してはダンパーが 2 つ存在する が、その履歴形状がほぼ一致したため、図 4 に関し ては片側のダンパーのみを示している。また、表 5 に加振中の粘弾性ダンパー温度の最大値を示す。ダ ンパー①, ②が 1 層のダンパー、ダンパー③が 2 層 のダンパーである。

摩擦ダンパーは初期剛性が非常に高い。最初に入 力した 0.2g の 2 波においては殆ど滑らず、ほぼ弾 性であった。0.6g 神戸波ですべり荷重約 25kN の矩 形の履歴を示した。また、残留変形は 8mm ほどであ った。0.2g 神戸波(2回目)の入力においても滑らず 弾性であった。神戸波原波の入力では、再び滑り始 めるもダンパー性能の低下は見られなかった。

2VK-VK 試験体の粘弾性ダンパーは、最初に入力 した 0.2g の 2 波において楕円の履歴を示したこと から、粘弾性ダンパーが 0.2g レベルの小振幅の入 力に対しても機能していることが分かる。0.6g神 戸波の入力において、前の2波と比べ、等価剛性が やや低いが、これはダンパーの損傷によるものでは なく、粘弾性体の加振中の温度上昇によるものであ る(表 5)。0.2g神戸波2回目の履歴形状が 0.2g神 戸波(1回目)とほぼ同じであることからも、神戸 0.6g 波の入力に対してもダンパー自身に損傷がな いと言える。神戸波原波の入力においては、2層の 粘弾性ダンパーが最大で約 9mm 変形した。粘弾性ダ ンパーの厚さは 3mm のため、歪で 300%のせん断変 形をしたことになるが、本実験に用いた粘弾性体は 300%まではほとんど損傷しないと考えられるため 4)、粘弾性ダンパーの損傷は起きていないと考えら れる。また、全加振においてダンパー③はダンパー ①、②よりも変形が大きく、描く楕円の面積も大き くなるため、粘弾性体の温度は一番高く上昇してい る。2VW-VW 試験体の粘弾性ダンパーも 2VK-VK 試験 体と同様の傾向を示したが、層間変位が小さくなっ た分ダンパー変位もそれぞれ小さくなっている。 2VW-VW 試験体の層せん断力と層間変位の関係にお いて、各層とも 2VK-VK 試験体よりも損失剛性が低 下しているのはそのためである。

3.4 エネルギー吸収

図5に各層全体とダンパーのエネルギー吸収量を 示す。横軸は試験体ナンバー(表 1)を表している。 全体の吸収量は層せん断カー層間変位の履歴面積 (図 3)から、ダンパーの吸収量は各ダンパーの履歴 面積(図 4)の合計から求めた。

一般に短周期領域におけるエネルギースペクトル は固有周期に比例するが、本実験においてもこの傾 向が現れており、1 次固有周期の短い 2FK-1.6WP,

(単位:°C)

表5 ダンパー温度の最大上昇値

	H	入力地震動							
試験体名	No.	0.2g Taft	0.2g 神戸	0.6g 神戸	0.2g 神戸(2)	0.83g 神戸	0.83g 神戸(2)		
	1	0.2	0.2	1.0	0.1	1.2			
2010-1.000	2	0.2	0.1	0.8	0.2	0.8			
	1	0.3	0.3	2.4	0.3	3.9	-		
2VK-VK	2	0.3	0.3	2.5	0.3	4.2			
	3	0.3	0.3	3.0	0.4	6.6			
	1	0.1	0.1	1.0	0.1	2.4	2.7		
2VW-VW	2	0.2	0.1	1.2	0.1	2.8	3.1		
	3	0.2	0.1	1.2	0.1	2.8	3.4		

2VW-VW 試験体は他の試験体よりもエネルギー吸収 量が少なかった。1,2 層とも構造用合板で構成され る試験体に関しては、0.2g 神戸波の 2 回目の入力 で1回目の約3倍程度のエネルギーを吸収している ことがわかる。これは 0.6g 神戸波の入力により架 構が損傷し、1 次固有周期が延びたためと考えられ る。

摩擦ダンパーを有する試験体では 0.2g 神戸波の 入力ではダンパーに滑りが生じないためエネルギー 吸収量も少ないが、0.6g 神戸波の入力では 1 層全 体が吸収したエネルギーの約 65%をダンパーが吸収 した(図 5, No.4)。粘弾性ダンパーを有する試験体 では常にほぼ一定のエネルギーを吸収し、VK-VK 試 験体では全体の約 80%ものエネルギーをダンパーが 吸収した(図 5, No.5)。このように制振壁を持つ層 では全体のエネルギーの大半をダンパーが吸収する ため、架構の損傷が低いということがわかる。

3.5 架構の特性

最大加速度 0.1g のホワイトノイズ波の入力によ り算出した架構の特性を図6に示す。

1,2 層とも構造用合板で構成される試験体におい て、2WP-1.6WP と 2WP-1.2WP 試験体には初期周期に ほとんど差が生じなかった。これは3.2節にて詳述 したように、構造用合板と木質フレームの接触面に 発生する摩擦力の影響が大きいためと考えられる。 また、0.2g の入力後では周期はほとんど変わらな いことから、0.2g の入力では損傷は少ないことが 確認できる。しかし 0.6g 神戸波以上の入力後では 固有振動数が著しく低下する。その際に減衰定数 h₁が上昇するのは、エネルギー吸収能力が上がっ たためではなく架構が損傷してエネルギーを吸収し たためで、粘性減衰係数 c₁の値の上昇が少ないこ とからも明らかである。

また1層に制振壁、2層に構造用合板を配置した 試験体では、損傷が2層の合板に集中するため、同 様の傾向を示している。個々にみると、2FK-1.6WP 試験体において減衰が低いのは、0.1gの入力では 摩擦ダンパーが滑らず、エネルギーを吸収できない ためである。2VK-1.6WP 試験体においては最初は h_1 =20%前後の性能を示したが、神戸波原波の入力後は c_1 が大幅に低下した。これは神戸波原波の入力に より2層が著しく変形し、ダンパーを持つ1層の層 間変位が相対的に小さくなったためと考えられる。

全ての耐力要素に粘弾性ダンパーが入った試験体では共に粘性減衰が高く、特に 2VK-VK 試験体では 0.6g 神戸波以上の入力後も安定して $h_1 = 22\%$ 前後の 性能を保っている。また、 T_1 も常に安定した結果 となっていることがわかる。

4. 地震応答解析

試験体は、加振方向に対して壁要素を含む中央構 面と外側の構面から構成される。しかし、外側の構 面に耐力壁は存在せず、接合部もピンに近い形状を していることから、中央構面に比べて外側の構面が 負担する層せん断力は極めて小さい(実験結果によ ると外側の2構面が負担する層せん断力は 1/120rad.変形時に0.6kNであり、これは一番剛性 の低い耐力要素の5%未満)。そこで、中央構面のみ を取り出した平面フレームの地震応答解析を行う。 紙幅の都合上、ここでは2VK-VK 試験体の結果のみ を示す。

4.1 接合部特性のモデル化と平面フレームモデル

昨年度までに行われた接合部の曲げ、引張、せん 断に対する実験結果を元に、本実験に用いた接合部 のモデル化を行う。本実験の試験体には柱脚部に内 使いL型金物2個と引き寄せ金物、柱頭部には内使 いL型金物2個がついている。なお、2層の耐力要 素下の柱頭部には引き寄せ金物もついている。図7 に接合部実験結果および解析用履歴モデルを示す。 実験結果を見てわかるように、接合部の特性は加力 の方向により異なる。本試験体では柱が偶数本存在 するので、接合部の履歴モデルは正負の荷重の平均 値に合わせてモデル化した。

引張に関しては、負 側の柱のめり込みは、 既往の研究⁵⁾からバイ リニアに置換した。せん断定、引き で、関しては、引き 寄いの履歴ないの履整ははも 部のした。また、制齢部の にの強制変形実験の 結果¹⁾からその変形は 小さかったことから、 0.5mm 変形時の割線剛 性を初期剛性とする弾 塑性バネとした。

これらの接合部の特 性を図8に示す平面フ レームモデルに適用し た。柱・梁・K型ブレ ースは材料特性値を用 いた弾性部材とし、部 材の減衰定数は剛性比

例型の 2%とした。粘弾性体は図 9 のように配置し た。質量は実験と同条件となるように設定した。す なわち、桁中央には水平方向への慣性力として働く 質量 m₁, m₂を図 8 のように配置し、試験体の長期軸 力と同じ鉛直荷重をかけた状態で解析を行った。入 力地震動は実験により試験体土台で得られた加速度 記録を用いた。

4.2 解析結果の再現性

図10に実験で計測した0.6g神戸波の振動台加速 度を入力した場合の層間変位の時刻歴、図11に層 せん断力と層間変位の関係、図12にダンパー可動 方向のダンパーカと変位の関係を示す。図10にお いて実験値と解析値を比べると、2層の層間変位で 約30%程度解析値が大きいが、1層の両者はほぼ一 致しており、周期に関しては1,2層ともほぼ一致し ている。図11では2層の剛性が解析値は実験値の 約半分になっているものの、1層の剛性はほぼ等し い。図12においては剛性に関して良い一致を示し ているといえる。以上から2層に関して多少の誤差 は生じているものの、実験をほぼ再現できているこ とがわかる。

4.3 確認

部材の最大荷重および接合部の変形量に関して確認を行う。部材の最大荷重を確認したところ、神戸 波原波の入力においても曲げ・引張・せん断の全て において短期許容応力度以下に留まっていた。この ことから、損傷箇所は接合部に集中することがわか る。制振壁の設計時に設定した接合部の許容変形量 は引張・せん断ともに1mmであったのに対し、接合 部の変形量は図 13 の値となった。一部引張変形で

図13 神戸波原波入力時の接合部の変形量

許容値を越えている箇所(図 13 の灰色)があるものの、ほぼ目標を達成できていることがわかる。

5. まとめ

在来軸組構法による2層木質制振架構の振動台実 験によりその動的挙動を把握した。以下に得られた 知見をまとめる。

- 構造用合板では釘が緩むとスリップ型の履歴を 示し、その後は中規模地震でも変形が増大する。
- 2) 変形モードは1,2層の剛性比に敏感である。
- 3) 粘弾性ダンパー制振壁を各層に組み込むと、ダンパーが全体の約8割のエネルギーを吸収し、 神戸波原波に対しても架構の損傷を抑えることが可能である。また、並列に構造用合板を組み込むことで、さらに変形を抑えることが可能である。
- 5) 平面フレームモデルの地震応答解析を行うこと で、実験の信頼性と設計の妥当性を確認した。

参考文献

- 2) 笠井和彦,坂田弘安,和田章,宮下健:K型ブレース によるシアリンク制振機構を用いた木質架構の動的 挙動,日本建築学会構造系論文集,第 598 号,pp. 51-60,2005.12
- 2) 笠井和彦,和田章,坂田弘安,緑川光正,大木洋司, 中川徹:変位依存ダンパーをもつ木質架構の振動台 実験,日本建築学会構造系論文集,第 594 号,pp. 101-110,2005.8
- オ上雅英,稲山正弘:任意の釘配列で打たれた面材 壁の弾塑性挙動の予測式,日本建築学会構造系論文 集,第519号,pp. 87-93, 1999.5
- 新健, 笠井和彦, 大熊潔: 粘弾性体の破壊挙動に関 する実験的研究 日本建築学会大会学術講演梗概集, pp.315-316, 2001.9
- 5) 杜重堅:集成材同士のめり込み挙動に関する実験的 研究,平成 13 年度東京工業大学大学院 修士論文, 2002