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Abstract 

 
This study concerns simulation of fault 

rupturing during strong ground motion and 
the effects of faults on underground structures. 
The method used here includes four steps. 
First, a numerical tool is developed to obtain 
distribution of displacements in an elastic 
medium. Next step is using a proper technique 
to apply moving boundaries to this medium to 
simulate fault dislocation. Additional 
capabilities are also required to include shear-
band propagation in soil layers which are 
considered in the third step and finally, the 
applications of this study are discussed.   

The soft soil layers are modeled using the 
Radial Point Interpolation meshfree technique, 
and the bedrock is modeled with finite 
elements. When applying dynamic fault 
dislocation inside the bedrock region using 
the split-node technique, some parts of this 
region move upward and push the soft soil 
layers. The split-node technique is used to 
introduce a displacement dislocation between 
adjacent elements. 

 
1. Objective and scope of research 

 
In earthquake engineering one of the most 

important phenomena is to simulate fault 
deformation during strong ground motion and 
investigate the effects of the fault on nearby 
structures. When an earthquake occurs in an 
urban area, it is important to measure the 
ground and soil deformations around faulting 
zone, because there are many underground 
facilities and lifelines which can be affected 
by soil deformation. 

The objective of this research is to model 
upper layer soft soil by mesh free method and 
then apply a fault deformation at bedrock 
level to observe the deformation distribution 
of the upper soil layers and study the effects 
of the fault on buried structures inside the soil 
layers (Fig. 1). The  Radial Point Interpolation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

meshfree method is used to model the soil  
layers because meshfree techniques have 
shown better results than the conventional 
Finite Element Method (FEM)  for  simulating  
large deformations. This is because of mesh 
distortion in finite elements due to large 
deformations (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Dislocation of soft soil layer due to 
               fault dislocation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Element distortion in the elements near  
           fault dislocation. 
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2.  Developing dynamic FEM and Meshfree   
     code 
 

In the conventional FEM method, the 
medium is descritized by small elements. For 
each element, all field variables should be 
calculated at nodal points of the element. In 
order to calculate these variables, local 
stiffness, mass and damping matrices should 
be evaluated at the integration points inside 
each element and then added together to form 
the local matrices of that element. These local 
matrices are calculated using shape functions 
which relate field variables at the integration 
points to those of nodal points. Every 
integration point inside each element is 
related only to the nodal points of that 
particular element. Therefore, if the shape of 
the element is distorted, then those shape 
functions are not suitable to approximate 
displacement inside the element any more. 
This is the origin of the weakness in large 
deformation using conventional FEM. 

Many methods have been developed in 
different fields of science and engineering to 
overcome this difficulty. Among them, 
meshfree technique is a new method. There 
are different types of meshfree methods. In 
this research, the kernel of meshfree part of 
the program is based on Radial Point 
Interpolation Method (RPIM) which has been 
developed by Liu and Gu (2001) and Liu and 
Gu (2005). The reason for choosing RPIM is 
that it satisfies Kronecker–Delta behavior at 
nodal points which enables it to be linked to 
finite element part directly and without any 
additional treatment. 

Using Radial Basis and Polynomial 
functions, the shape functions are 
approximated such that they pass through all 
neighboring nodes at each integration point. 
Fig. 3 shows a schematic figure of a shape 
function in RPIM. 

The influence of the shape function at each 
integration point is limited to a small region 
which is called support domain. Every nodal 
point inside the support domain has effect on 
the field variables at the integration point. 
This is helpful when localized changes of 
field variables are needed. 

In order to calculate the stiffness and mass 
matrices, the medium is divided into virtual 
cells which represent the domain of 
integration. There are several integration 
points inside every cell at which the stiffness 
and mass matrices should be evaluated and 
then added together to form the local matrices 
of that cell. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Shape  function  of  an  integration  
            point passing through neighboring       
            nodes. 
 

Next, these local matrices are assembled to 
form the global stiffness and mass matrices. 
The remaining procedures for solving 
governing equations are the same as regular 
FEM. 

Based on the method which was explained 
in this section, a computer program has been 
developed.  
 
3.   Verification   examples   for   dynamic   
      meshfree code 

 
In order to verify the accuracy and validity 

of the written code, the following examples of 
2D transient wave propagation have been 
solved and the results were checked with 
some available time-domain solutions. In the 
following examples the non-reflecting 
boundaries are not applied, so, the results are 
plotted before they are affected by reflected 
waves from the boundaries. 
 
3.1 Transient response of a massless rigid  

strip   foundation  under vertical  and  
       horizontal harmonic loads 
 

In this example two-dimensional transient 
wave propagation due to vibration of a rigid 
strip foundation under vertical and horizontal 
harmonic loads is simulated and the results 
are compared with the results of BEM in time 
domain (Spyrakos and Beskos 1986). The 
geometry of the system is shown in Fig. 4. 

Material properties of the soil medium are: 
Modulus of elasticity  = 1.24E10E kg-f/m2, 
Poisson’s ratio = 0.333,ν mass density 

= 546.63ρ kg/m3, P-wave and S-wave 
velocities are = 5833.24Vp m/s and 

= 2916.62Vs m/s respectively. This system 
has been solved for two load cases as: 
Case 1:  V = 262692 Sin(5814 t)   kg-f. 
Case 2:  H = 262692 Sin(5814 t)   kg-f. 
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Fig. 4. Geometry of the massless rigid strip 
               foundation system. 
 

Figure 5 shows the vertical displacement 
of the foundation in Case 1 and Fig. 6 shows 
the horizontal displacement of the foundation 
in Case 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Vertical   displacement   of   the   rigid       
          foundation under vertical harmonic load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig. 6. Horizontal  displacement of the  rigid  
             foundation under horizontal harmonic  
             load. 
 

Figures 5 and 6 show good agreement 
between the results of meshfree program and 
the BEM results. 
 
 
 

3.2 Transient  response  of a  massless rigid  
       strip foundation under vertical      
       impulsive  load 
 

In order to check the results of the 
meshfree code for very high frequency 
transient loading, an impulsive vertical load 
(Case 3) is applied to the previous system and 
the vertical displacement of the foundation is 
compared with BEM result (Fig. 7). 
 
Case 3: V = 262692 kg-f   0 ≤ t ≤ 0.16E-4  sec. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Vertical   displacement   of   the   rigid  
            foundation under vertical impulse load. 
 

It can be seen in Fig. 7 that the meshfree 
result curve passes between the curves related 
to two boundary element methods. The good 
agreement among the results of verification 
examples of Section 3 shows that the 
meshfree code is working properly. 

 
4.  Simulation of flexible moving boundary 
 

In this section the method of applying fault 
dislocation is explained. The conventional 
way of applying fault dislocation at the base 
of the soil layers is to move the part of the 
boundary at one side of the fault with 
prescribed displacement and keep the 
boundary at the other side of the fault fixed. 
The weakness of this method is that by 
applying predefined displacements at the 
boundary, the nodes of that boundary become 
rigid such that the incident waves to these 
boundaries are reflected back to the system 
again without affecting these boundaries 
hence this conventional method cannot 
simulate transmitting boundaries which can be 
called rigid moving boundary method. To 
overcome this difficulty, the split-node 
technique is used to introduce a displacement 
dislocation between adjacent elements 
(Melosh and Raefsky 1981). The near field is 
modeled by meshfree technique and a finite 
element mesh is linked to this area at the 
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boundary nodes (Fig. 8). The fault dislocation 
is applied inside the finite element region, 
hence, this region deforms. Since the 
meshfree region and the finite element region 
share some nodes across their interfaces, the 
finite element mesh deformations are 
transferred to meshfree region through these 
shared nodes. Thus, the moving boundary of 
meshfree region is modeled by flexible FE 
mesh which can be called flexible moving 
boundary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Simulation of flexible moving boundary  
           using the split–node technique. 
 

In the split–node technique the fault 
dislocation is replaced by forces which 
produce the same amount of displacements as 
the actual fault does. For simplicity only one 
element on each side of the fault line is 
depicted in Fig. 9.  

Before the faulting the two elements are 
shown by IMNJ and MKLN. After the fault 
occurs the two points M and N move to the 
points M′  and N′ respectively, but the corners 
of the two deformed elements on the fault line 
have some dislocations with respect to M′  
and N′  which are called DUM and DUN   
respectively. 

If stiffnesses of the fault elements are 
known, then the induced forces in the nodes 
of the fault elements due to these dislocations 
can be calculated. Fault elements are the 
elements which have at least one shared node 
with the fault line (gray elements in Fig. 8). 
After calculating these induced forces at fault 
elements nodes, they are applied to the 
original model with the opposite sign. These 
forces produce the same deformations in the 
system as the fault dislocation does.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig. 9. Deformations of elements at the both   
              sides of fault line. 
 
5.  Verification  example  for  split – node  
      technique 
 

The method which was explained in 
section 4 is the basis of applying fault 
dislocation by flexible moving boundary. In 
the next section an example has been solved 
and verified with the analytical result. 
 
5.1 Vertical Dip–Slip faulting at the surface  
      of a half–plane (static analysis) 
 

In this section the surface deformation of a 
half–plane due to a vertical dislocation has 
been obtained and compared with the 
analytical solution (Freund and Barnett 1976). 
The geometry of the problem is shown in    
Fig. 10. Dimensions of each element are 0.1m 
by 0.1m. Because any material properties can 
be used, the material properties of the medium 
are considered to be the same as previous 
examples. The crack dislocation is considered 
to be 0.1m at each side. 

 
 
 
 
 
 
 
 
 
 
Fig. 10. Geometry of half–plane medium under 
              vertical dislocation. 
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The surface deformation of the medium 
around crack is shown in Fig. 11 in more 
details. There is only one node at each shared 
point between adjacent elements on the fault 
line. Although a clear crack can not be seen 
on this line, still the deformations outside the 
fault elements are correct.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Deformations of medium around crack 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Normalized vertical surface displacement  
             of the half–plane after faulting. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Normalized horizontal surface displacement  
               of the half–plane after faulting. 

In Fig. 12 and Fig. 13, the normalized 
vertical and horizontal displacements of the 
surface nodes are drawn respectively. The 
results show that the kernel for applying fault 
dislocation at the base of the system, is 
working properly. 

For kinematic source modeling in normal 
faulting, a source-time function for rupturing 
should be considered (Haskell 1969). The 
source–time function represents the fault slip 
variation in time (Fig. 14). 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Simple source – time function used in   
             the kinematic description of faulting. 
 

Using the Haskell ramp function in Fig. 14 
for kinematic fault rupturing, the dynamic 
response of the system can be obtained. 
 
6.  Flow chart of progress 
 
All the processes which discussed in this 
study have been carried out from October 1, 
2005 until February 28, 2006. Figure 15 
shows the progress and research work 
completed in this period (gray boxes). During 
this period a Meshfree-FEM code for the 
analysis of linear elastic media has been 
developed and verified with some available 
solutions for 2D transient wave propagation. 
The step one and two completed and some 
part of step three has been done. Step four is 
the objective of this study. 
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Fig. 15. Flow chart of progress. 
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