FMBEM による波動散乱シミュレーション

斎藤 隆泰¹⁾、 廣瀬 壮一²⁾、木本和志³⁾

- 1) 東京工業大学 情報理工学研究科 情報環境学専攻, saito@qnde.mei.titech.ac.jp
- 2) 東京工業大学 情報理工学研究科 情報環境学専攻, shirose@cv.titech.ac.jp
- 3) 東京工業大学 情報理工学研究科 情報環境学専攻, kimoto@cv.titech.ac.jp

1. はじめに

都市を支える地盤中の地震波の挙動や、地震波から 津波励起に至るまでの挙動、そして地震被害を受けた 構造物の損傷状況を明らかにすることは、都市の防災 計画の策定や、被災後の都市機能を維持管理する上で 最も有用な情報を提供することとなる。実際、数値シ ミュレーションによる地震・津波予測¹⁾や、構造物の 健全度を調査する一手法として知られる定量的超音波 非破壊評価法に関する研究²⁾は、これまでにも多くの 研究者が手がけており、実問題への応用が検討されて いる。しかし、実現への課題は多い。数値シミュレー ション手法として、有限要素法や境界要素法の利用が 考えられるが、いずれにせよ、扱う領域の大きさが対 象とする波長に比べて非常に大きいため、解析の精度 を維持するためには必然的に大規模な計算を実行する 必要がある。そのため、現実的な計算時間内で解析を 実行することは極めて困難となり、現行では過去の地 震によるデータや既知の地層構造から簡易なモデル化 を施し、過去の防災上の問題点を再確認するのに応用 されている程度である。そのため、一刻も早く三次元 大規模波動解析手法を確立し、地震工学や超音波非破 壊評価といった分野へ適用することが望まれる。

このような中、近年、大規模問題に対する高速解法 として、高速多重極法が Rokhlin³⁾により提案され、分 子動力学や、天体物理学といった分野で発展しつづけ ている。そして、波動問題に有効な境界要素法(FMBEM) が福井らにより応用され⁵⁾、現在では、その適用範囲 は三次元動弾性問題へと拡張されつつある⁶⁾⁷⁾。本研 究では、その高速多重極境界要素法を地震波・超音波 シミュレーションへの分野へ拡張するための開発・研 究を行い、数値解析例とともにその有効性を確認する ことを行う。

2. 三次元スカラー波動解析

地震波動・超音波探傷シミュレーションといった問 題では、解析領域が波長に比べて比較的大きな半無限、 もしくは無限領域の外部散乱問題となる場合が多い。 そのため、有限要素法と比べ、比較的自由度を抑える ことができ、半無限、無限領域の問題に有効な境界要 素法がよく用いられる。ここでは、問題を三次元周波 数領域に限定し、波動問題における境界要素法及び高 速多重極境界要素法を用いる場合の定式化についてま とめる。

2.1 スカラー波動問題

スカラー波動問題は弾性波動問題の基礎となるだけ でなく、水の波の解析、音波、電磁波の解析等その適 用範囲は広い。そのため、まず、スカラー波動問題に ついて解説する。今、散乱体の外部領域を Ω 、散乱体 境界を Γ とすると波動場 p(x) は次の Helmholtz 方程 式を満たす。

$$\nabla^2 p(\boldsymbol{x}) + k^2 p(\boldsymbol{x}) = 0 \quad \in \quad \Omega \tag{1}$$

ここで k は 波数 である。 境界 Γ 上 で 境界条件

$$p = \bar{p}$$
 on Γ_1 , $q = \frac{\partial p}{\partial n} = \bar{q}$ on $\Gamma_2 = \Gamma \setminus \Gamma_1$

が与えられれば、入射波 $p_{in}(x)$ に対する外部散乱問題の解は次の境界積分方程式を解くことで求まる。

$$c(\boldsymbol{x})p(\boldsymbol{x}) = p_{in}(\boldsymbol{x})$$

+
$$\int_{\Gamma} G(\boldsymbol{x}, \boldsymbol{y})q(\boldsymbol{y})d\Gamma(\boldsymbol{y}) - \int_{\Gamma} H(\boldsymbol{x}, \boldsymbol{y})p(\boldsymbol{y})d\Gamma(\boldsymbol{y})(2)$$

ここで G(x, y), H(x, y) は三次元 Helmholtz 方程式 の基本解であり

$$G(\boldsymbol{x}, \boldsymbol{y}) = \frac{e^{ikr}}{4\pi r} \tag{3}$$

$$H(\boldsymbol{x}, \boldsymbol{y}) = \frac{\partial G(\boldsymbol{x}, \boldsymbol{y})}{\partial n_y} \tag{4}$$

で与えられる。ただしr = |x - y|であり、 $\partial/\partial n_y$ は ソース点yにおける法線方向微分を表す。c(x)は境界 に依存する自由項である。通常、境界要素法では、式 (2)を離散化し、代数方程式に帰着することで未知の解 を得ることが出来る。しかし、要素数をNとすれば、 要素数の増加に伴い計算量は $O(N^3)$ 程度で増加する。 そのためNが大きい大規模問題の場合は、現実的な 時間内で計算を実行することは著しく困難となる。

2.2 スカラー波動問題に対する高速多重極境界要素法 三次元問題の場合は、単純な問題でない限り、要素 数 N が数千、数万といったオーダーになるのは必然 である。そのため、高速多重極法を境界要素法に適用 することで計算を高速化する。高速多重極境界要素法 の基本的な概念は式(2)における、基本解(3)、(4)を x、yに関する変数分離系で表し、多重極モーメント を形成することが出発点となる。そして境界上の未知 量に適当な値を初期値として導入し、得られた多重極 モーメントを、8分木階層構造を用いた高速多重極ア ルゴリズムと反復法⁸⁾を組み合わせて行列ベクトル積 を高速に計算する手法である。高速多重極アルゴリズ ムや階層構造に関する詳細は他の論文⁹⁾にも詳細に記 述されていることから、ここでは割愛し、多重極モー メントの定式化についてのみ述べる。

三次元 Helmholtz 方程式に対する多重極展開は次の 定理に基く。

$$\frac{e^{ikr}}{r} = ik \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (2n+1)\overline{I_n^m}(k, \boldsymbol{y} - \boldsymbol{o}) O_n^m(k, \boldsymbol{x} - \boldsymbol{o})$$
(5)

ここで⁻ は複素共役を表し、関数 $O_n^m(k, x - o)$ 、 $I_n^m(k, x - o)$ は

$$O_n^m(k, \boldsymbol{x} - \boldsymbol{o}) = h_n^{(1)}(k |\boldsymbol{x} - \boldsymbol{o}|) Y_n^m(\frac{\boldsymbol{x} - \boldsymbol{o}}{|\boldsymbol{x} - \boldsymbol{o}|})$$
(6)

$$I_n^m(k, \boldsymbol{y} - \boldsymbol{o}) = j_n^{(1)}(k |\boldsymbol{y} - \boldsymbol{o}|)Y_n^m(\frac{\boldsymbol{y} - \boldsymbol{o}}{|\boldsymbol{y} - \boldsymbol{o}|}) \quad (7)$$

により定義される。ただし、 $h_n^{(1)}$ 、 $j_n^{(1)}$ はそれぞれ球 ハンケル関数、球ベッセル関数であり、また Y_n^m は次 の球面調和関数である。

$$Y_n^m\left(\frac{\boldsymbol{x}-\boldsymbol{o}}{|\boldsymbol{x}-\boldsymbol{o}|}\right) = \sqrt{\frac{(n-m)!}{(n+m)!}} P_n^m(\cos\theta) e^{im\phi}.$$
 (8)

ここに $\theta \ge \phi$ は点oを基点とした点xにおける天頂 角と方位角であり、 P_n^m は Legendre 陪関数である。 Epton と Dembart¹⁰⁾に倣い、式 (5) を式 (3) に代入し 変数x, y に関する分離形となるように変形すれば次 の式を得る。

$$\int_{\Gamma} G(\boldsymbol{x}, \boldsymbol{y}) q(\boldsymbol{y}) d\Gamma(\boldsymbol{y}) = \int_{\Gamma} \frac{e^{ikr}}{4\pi r} q(\boldsymbol{y}) d\Gamma(\boldsymbol{y})$$
$$= \frac{ik}{4\pi} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} (2n+1) O_n^m(k, \boldsymbol{x} - \boldsymbol{o}) M_n^{mG}(\boldsymbol{o})$$
(9)

ここで $M_n^{mG}(o)$ は、基本解(3)に対応する観測点xに依存しない多重極モーメントであり、

$$M_n^{mG}(\boldsymbol{o}) = \int_{\Gamma} \bar{I_n^m}(\boldsymbol{y} - \boldsymbol{o})q(\boldsymbol{y})d\Gamma(\boldsymbol{y}) \qquad (10)$$

で表される。ただし、点oは|x-o| > |y-o|の関係 を満たす点であり、多重極点と呼ばれる。同様に、式 (5)を式 (4) に代入すれば、

$$\int_{\Gamma} H(\boldsymbol{x}, \boldsymbol{y}) p(\boldsymbol{y}) d\Gamma(\boldsymbol{y}) = \int_{\Gamma} \frac{\partial}{\partial n_y} \left(\frac{e^{ikr}}{4\pi r} \right) p(\boldsymbol{y}) d\Gamma(\boldsymbol{y})$$

$$=\frac{ik}{4\pi}\sum_{n=0}^{\infty}\sum_{m=-n}^{n}(2n+1)O_{n}^{m}(k,\boldsymbol{x}-\boldsymbol{o})M_{n}^{mH}(\boldsymbol{o})$$
(11)

を得ることが出来る。ここで第二基本解に対する多重 極モーメント $M_n^{mH}(o)$ は、

$$M_n^{mH}(\boldsymbol{o}) = \int_{\Gamma} \frac{\partial}{\partial n_y} \overline{I}_n^m(k, \boldsymbol{y} - \boldsymbol{o}) p(\boldsymbol{y}) d\Gamma(\boldsymbol{y}) \quad (12)$$

で表される。以上のように各基本解を変数 x、y に関して分離できれば、

- 1. 解析領域を、8分木構造に対応した立方体のセル による階層構造にする。
- 分離された点 y に関する部分(多重極モーメント) をレベル2の階層まで、各セルの中心に移動させ ながら集める。
- 3. レベル2から順に多重極係数を局所展開係数に変換し、変換した局所展開係数を集めながら、8分木構造の葉のセルまで計算する。葉のセルに含まれる観測点xに対して、遠方セルと判断されたセルに属するソース点yからの寄与は葉セルにおける局所展開として計算する。また、近傍のセル中のyからの寄与は通常の境界要素法同様、直接計算して加える。

といった高速多重極アルゴリズムを用いて計算を高速 化することが可能である。

2.3 球形空洞による多重散乱解析

多重散乱理論に関する研究は波動論の基礎的な研究 として古くから行われており、その理論は、繊維強化 複合材料等に対する超音波非破壊評価¹¹⁾の分野へと 応用されている。これまで二次元動弾性問題に対する 多重散乱解析は斎藤、永井、廣瀬¹²⁾により報告されて いるが、三次元問題に対する多重散乱解析はほとんど 報告されていない。そのため、ここではまず、図1で 表されるような Helmholtz 方程式に支配される三次元 波動場の多重散乱モデルについて解析した。直径 aの 空洞群 (4 行 × 5 列) が x₁、 x₂ 軸方向に対して等間隔 3a/2 で並んでいるものとする。また、それぞれの空洞 の中心は x₁ - x₂ 面上に存在し、中央行 (3 行)・左端 (1列)の空洞の中心は座標原点に一致する。この時、 x_1 軸負の方向から k = 1.0、振幅 p_0 の平面波が空洞群 に向かって入射するとする。この問題を高速多重極境 界要素法で解析した。反復法には GMRES 法を用い、 反復法における打ち切り誤差は10⁻⁵とした。

図2はx1軸上における変位の絶対値を表している。 また比較のため、通常のBEMにより得られた結果も 実線で示した。空洞群の前方で大きな変位を確認する ことが出来る一方、空洞群内部及び後方では変位は小 さくなっている。入射波が空洞群の前面で反射されて いる様子が伺える。BEM、FMBEM両者により得ら れた解は非常に良く一致していることがわかる。

次に、同様の設定で7×7の空洞群による多重散乱解 析を行った。空洞群の中央行・左端の空洞の中心は原

図 1 入射平面波による多重散乱モデル

図 2 BEM 及び FMBEM による解の精度比較 (x₁ 軸上の変位)

点にあるとする。全要素数は 18816 である。また、この時の要素分割モデルを図 3 に示した。図 4 は $x_3 = 0$ の平面上の変位の絶対値を表したものである。空洞群を通過する波動はほとんど確認できず、空洞群の前面で大きな反射応答を見ることが出来る。

最後に、 5×5 (要素数 9600)、 9×9 (要素数 31104) の空洞群による多重散乱解析で要した計算時間を表 1 に示した。なお、 9×9 の空洞群による多重散乱解析 は、BEM のみ数時間程度では計算がおわらないため、 予測計算時間を記してある。FMBEM の使用により計 算時間を大幅に軽減したことが確認出来る。

表 1 空洞数を変化させた場合の BEM 及び FMBEM に よる CPU time の比較

CPU time(sec.) \空洞の数	5×5	9×9
BEM(CPU time)	18420	340000
FMBEM(CPU time)	3668	56040

図 3 多重散乱問題に対する要素分割モデル (7×7空洞群)

図 4 7×7空洞群周辺の変位

3. 三次元弹性波動解析

次に、三次元弾性波動散乱問題について考える。弾 性波動問題に対しても、一旦多重極モーメントを形成 すれば、スカラー波動問題と同様の高速多重極アルゴ リズムにより計算を高速化することができる。

3.1 弹性波動問題

スカラー波動問題同様、外部散乱問題を考える。散 乱体の外部領域を Ω^D 、境界を Γ^D とすれば、弾性波 動場u(x)は次の Navier の支配方程式を満たす。

$$(\lambda + 2\mu)\nabla\nabla \cdot \boldsymbol{u}(\boldsymbol{x}) - \mu\nabla \times \nabla \times \boldsymbol{u}(\boldsymbol{x}) + \rho\omega^2 \boldsymbol{u}(\boldsymbol{x}) = \boldsymbol{0}$$
(13)

ここで、 $\lambda \ge \mu$ は Lamé 定数であり、 ρ は密度、 ω は 角周波数である。また、境界条件は Γ^D 上で

$$\boldsymbol{u} = \bar{\boldsymbol{u}} \quad on \quad \Gamma_1^D, \quad \boldsymbol{t} = \bar{\boldsymbol{t}} \quad on \quad \Gamma_2^D = \Gamma^D \setminus \Gamma_1^D$$
(14)

と与えられるとする。この時、入射波 *uⁱⁿ* による散乱 問題の解は、次の境界積分方程式により得られる。

$$c_{ij}(\boldsymbol{x})u_j(\boldsymbol{x}) = u_i^{in}(\boldsymbol{x}) + \int_{\Gamma^D} U_{ij}(\boldsymbol{x}, \boldsymbol{y})t_j(\boldsymbol{y})d\Gamma^D(\boldsymbol{y})$$
$$- \int_{\Gamma^D} T_{ij}(\boldsymbol{x}, \boldsymbol{y})u_j(\boldsymbol{y})d\Gamma^D(\boldsymbol{y})$$
(15)

ここで $c_{ij}(x)$ は境界に依存する自由項である。また $U_{ij}(x, y)$ 及び $T_{ij}(x, y)$ は三次元動弾性問題に対する 基本解で、

$$U_{ij}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{4\pi\mu} \left[\frac{e^{ik_T r}}{r} \delta_{ij} + \frac{1}{k_T^2} \frac{\partial^2}{\partial y_i \partial y_j} \left\{ \frac{e^{ik_T r}}{r} - \frac{e^{ik_L r}}{r} \right\} \right] (16)$$
$$T_{ij}(\boldsymbol{x}, \boldsymbol{y}) = n_k(\boldsymbol{y}) C_{jkpq} \frac{\partial}{\partial y_q} U_{ip}(\boldsymbol{x}, \boldsymbol{y})$$
(17)

で表される。ここで k_L 、 k_T はそれぞれ縦波、横波の 波数であり、 $n_k(y)$ は点y が属する境界での単位外向 き法線ベクトルを表す。また、 C_{jkpq} は弾性定数を表 す。スカラー波動問題同様、境界積分方程式 (15) を離 散化することにより、境界上の未知量を求めることが 出来る。

3.2 弾性波動問題に対する高速多重極境界要素法

弾性波動問題に対しても、スカラー波動問題同様の 高速多重極アルゴリズムを用いることで、式(15)に おける行列ベクトル積の計算を高速化することが出 来る。ただし、弾性波動場はスカラー波動場と違い縦 波、横波の二種類の波動に支配される。そのため、多 重極モーメントも、縦波、横波に関する二種類の多重 極モーメントを考慮する必要があることに注意しなけ ればならない。

式 (16) の右辺は $e^{ik\beta r}/r$ (ただし、 $\beta = L \text{ or } T$)の 項を含む形式で表されていることから、スカラー波動 問題同様、式 (5) を式 (16)、(17) に用いることで多重 極モーメントを得ることが出来る。今、縦波と横波に 関する寄与をそれぞれまとめるために、式 (16) を次 のように変形する。

$$U_{ij}(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{4\pi\mu k_T^2} \times \left(\epsilon_{rqi}\epsilon_{rsj}\frac{\partial^2}{\partial x_q \partial y_s}\frac{e^{ik_T r}}{r} + \frac{\partial^2}{\partial x_i \partial y_j}\frac{e^{ik_L r}}{r}\right) (18)$$

ここで ϵ_{rqi} は交代記号である。式 (18) に式 (5) を代入 すれば、以下の式を得る。

$$\int_{\Gamma^{D}} U_{ij}(\boldsymbol{x}, \boldsymbol{y}) t_{j}(\boldsymbol{y}) d\Gamma^{D}(\boldsymbol{y})$$
$$= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} A_{n} \epsilon_{rqi} \frac{\partial}{\partial x_{q}} O_{n}^{m}(k_{T}, \boldsymbol{x} - \boldsymbol{o}) M_{r,n,m}^{U_{T}}(\boldsymbol{o})$$

$$+\sum_{n=0}^{\infty}\sum_{m=-\infty}^{\infty}B_{n}\frac{\partial}{\partial x_{i}}O_{n}^{m}(k_{L},\boldsymbol{x}-\boldsymbol{o})M_{n,m}^{U_{L}}(\boldsymbol{o})$$
(19)

そこで A_n 、 B_n は それぞれ $A_n = (2n+1)i/4\pi\mu k_T$ 、 $B_n = (2n+1)ik_L/4\pi\mu k_T^2$ であり、また $M_{n,m}^{U_L}(\boldsymbol{o})$ 、 $M_{r,n,m}^{U_T}(\boldsymbol{o})$ は、

$$M_{n,m}^{U_L}(\boldsymbol{o}) = \int_{\Gamma^D} \frac{\partial}{\partial y_j} \bar{I}_n^m(k_L, \boldsymbol{y} - \boldsymbol{o}) t_j(\boldsymbol{y}) d\Gamma^D(\boldsymbol{y}) \quad (20)$$
$$M^{U_T}(\boldsymbol{o}) =$$

$$M_{r,\bar{n},m}(\boldsymbol{\partial}) = \int_{\Gamma^D} \epsilon_{rsj} \frac{\partial}{\partial y_s} \bar{I}_n^m(k_T, \boldsymbol{y} - \boldsymbol{o}) t_j(\boldsymbol{y}) d\Gamma^D(\boldsymbol{y}) \quad (21)$$

で表される、点*o*に関する縦波、横波に関する多重極 モーメントである。同様に、式(17)で表される第二基 本解に対して、式(5)を代入し、整理すれば次の式を 得る。

$$\int_{\Gamma^{D}} T_{ij}(\boldsymbol{x}, \boldsymbol{y}) u_{j}(\boldsymbol{y}) d\Gamma(\boldsymbol{y})$$

$$= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} A_{n} \epsilon_{rqi} \frac{\partial}{\partial x_{q}} O_{n}^{m}(k_{T}, \boldsymbol{x} - \boldsymbol{o}) M_{r,n,m}^{T_{T}}(\boldsymbol{o})$$

$$+ \sum_{n=0}^{\infty} \sum_{m=-\infty}^{\infty} B_{n} \frac{\partial}{\partial x_{i}} O_{n}^{m}(k_{L}, \boldsymbol{x} - \boldsymbol{o}) M_{n,m}^{T_{L}}(\boldsymbol{o})$$
(22)

そこで $M_{n,m}^{T_L}(o)$ 、 $M_{r,n,m}^{T_T}(o)$ は点oでの、第二基本解に対する縦波、横波に関する多重極モーメントであり、

$$M_{n,m}^{T_L}(\boldsymbol{o}) = \int_{\Gamma^D} n_k(\boldsymbol{y}) C_{jkpq} \frac{\partial}{\partial y_q} \\ \times \frac{\partial}{\partial y_p} \bar{I}_n^m(k_L, \boldsymbol{y} - \boldsymbol{o}) u_j(\boldsymbol{y}) d\Gamma^D(\boldsymbol{y}) (23) \\ M_{r,n,m}^{T_T}(\boldsymbol{o}) = \int_{\Gamma^D} \epsilon_{rsp} n_k(\boldsymbol{y}) C_{jkpq} \frac{\partial}{\partial y_s} \frac{\partial}{\partial y_q} \\ \times \bar{I}_n^m(k_T, \boldsymbol{y} - \boldsymbol{o}) u_j(\boldsymbol{y}) d\Gamma^D(\boldsymbol{y})$$
(24)

で表される。式 (10)、(12) と同様、式 (23)、(24) で 表される三次元動弾性問題に対する多重極モーメント も観測点 x に依存しない。従って、多重極モーメント $M_{n,m}^{T_L}(o)$ 、 $M_{r,n,m}^{T_T}(o)$ に関して、前節同様の高速多重 極アルゴリズムを適用可能である。

3.3 移動荷重による弾性波動解析

次に、図 5 のような $a \times 10a \times 4a$ の大きさの溝の側 を移動荷重が等速度で x_3 方向に運動する問題を三次元 動弾性高速多重極境界要素法により解析した。ただし、 地盤内の P 波速度 c_L と S 波速度 c_T の比を $c_L/c_T = 2$ とした。また移動荷重の速度は $V/c_T = 5/9$ とし、 x_3

図 5 移動荷重解析モデル

方向に対して $g_0 \sin^2(x_3 - Vt)$ の荷重分布を持ち、か つ x_1 方向には $1.5 < x_1/a < 2.5$ の範囲に一様に荷重 が作用するとする。そして時刻 $c_T t/a = 0$ において ピークが x_1 軸上に到達するものとした。なお、ここ では移動荷重による放射場を 2.5次元境界要素法で解 析し、得られた解を三次元問題における入射波動場と して用いている。なお、反復解法として GMRES 法を 用い、反復法における打ち切り誤差は 10^{-5} で設定し た。

図 6 は $ak_L = a\omega/c_L = 0.05$ における地表面 $x_3/a = 0.125$ における鉛直方向変位を表している。この時、要素数は 3200 であり、その要素分割モデルは図 7 で表される。比較のため通常の BEM で解析した場合の結果も図 6 に示した。両者は非常に良く一致していることが確認出来る。

次に周波数域で得られた解を逆フーリエ変換し、時 間域の解を導出した。図 8 は時刻 $c_T t/a = 10$ におけ る地表面での鉛直方向変位を表している。白抜き部分 は溝を表している。溝端部における回折の影響を確認 することが出来る。

次に、同様の問題で溝の寸法を変えることなく、要 素数を増減させて、BEM 及び FMBEM で CPU time を比較した。図9は両者の要素数と CPU time の関係 を示している。要素数 3000 程度までは BEM の方が 計算時間が短いが、以降は FMBEM の方が計算時間 が短くなる。よって FMBEM は大規模問題に適して いることが確認された。

4. おわりに

三次元スカラー波動問題及び弾性波動問題に対する 高速多重極境界要素法を開発した。多重散乱波動解析、 移動荷重による弾性波動解析に適用し、手法の有効性 を確認した。今後は、実際に地震波動伝播や超音波非 破壊評価に関する研究に本手法を適用することが課題 となる。その際には、高周波問題に対して、diagonal form 高速多重極法¹³⁾の導入や、層状体に対する本手 法の適用、複雑な形状を伴う問題に対する収束性の改 善等を考慮する必要があると考えらる。

また、時間領域高速多重極境界要素法や異方弾性体

図 6 BEM 及び FMBEM による解の精度比較 (地表面 (x₃/a = 0.125, x₂ = 0) での鉛直方向変位)

図 7 移動荷重による弾性波動解析に対する 要素分割モデル

図 8 c_Tt/a = 10.0 における地表面での鉛直方向変位

に対する高速多重極境界要素法の開発も今後の予定で ある。

参考文献

- 片岡俊一、片岡正次郎、大町達夫:観測記録と数値 シミュレーションから推定される1995年兵庫県南 部地震によるやや長周期地震動の伝播特性,自然 災害科学, Vol.16, No2, pp.125-142, 1997.
- (2) 廣瀬壮一:定量的超音波非破壊評価とその周辺技術,応用力学論文集,Vol.7, pp.3-12, 2004.
- Rokhlin, V: Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, pp. 187-207, 1985.
- 小林昭一編著: 波動解析と境界要素法,京都大学学 術出版会,2000.
- 福井卓雄、服部純一、土居野優:高速多重極法の境界 要素法への応用,構造工学論文集,43A,pp.373-382, 1997.
- 6) 吉田研一、西村直志、小林昭一:多重極積分方程式 法を用いたクラックによる三次元弾性波動散乱問題 の解析,応用力学論文集,Vol.3,pp.143-150,2000.
- 7)斎藤隆泰、土戸研一、廣瀬壮一:列車走行に伴う 環境振動解析のための 2.5-D・3-D 高速多重極境界 要素結合解法の開発,応用力学論文集,Vol.7,pp. 255-262,2004.
- 8) Barrett, R. et. al., 長谷川里美、長谷川秀彦、藤野 清次訳: 反復法 Templates, 朝倉書店, 1996.
- 斎藤隆泰、廣瀬壮一:大規模波動解析のための高速 多重極境界要素法の開発,東京工業大学土木工学科 研究報告, Vol.65, pp. pp.109-122, 2002.
- 10) Epton, M. A. and Dembart, B. : Multipole translation theory for the three-dimensional Laplace and Helmholtz equations, *SIAM J. Sci. COMPUT*, 16, pp. 865–897, 1995.
- 11) 琵琶志朗: 複合材料の男性波動散乱理論=超音波減

哀特性の理解のために=,超音波 TECHNO, 11-12, pp.85-89, 2001.

- 12) 斎藤隆泰、永井浩二、廣瀬壮一:高速多重極境界 要素法を用いた複合材料の弾性波動解析,計算数理 工学論文集, Vol. 5, pp.37-42, 2005.
- Rokhlin, V. : Diagonal forms of translation operations for Helmholtz equation in three dimensions, *Appl. and Comput. Harmonic Analysis*, 1, pp.82-93, 1993.