次世代型高度地震シミュレータの開発

市村強¹⁾, 佐茂隆洋²⁾, 篠竹英介³⁾, 堀宗朗⁴⁾

- 1) 東京工業大学 理工学研究科 土木工学専攻, ichimura@cv.titech.ac.jp
- 2) 東北大学 工学研究科 土木工学専攻, shinotake@e-society.cv.titech.ac.jp
- 3) 東京工業大学 理工学研究科 土木工学専攻, samo@e-society.cv.titech.ac.jp

4) 東京大学 地震研究所, hori@eri.u-tokyo.ac.jp

1.はじめに

都市機能の飛躍的な複雑化・高密度化に伴って未 経験の震災が起きる可能性が高まっており,経験的 なアプローチによる震災の予測・想定には限界があ ると予想される.勿論,過去の知見の重要性を否定 するものでは決してないが,過去の知見のみに頼ら ず,将来の地震や地震被害を理論的に正しく予測・ 想定し対処するという新しい方法論がひとつの有効 なアプローチと考えられる.

2. IES 概要

地震学の進歩により,地震現象そのものの解明も 進み,地震動予測も試みられている.また,耐震設 計の発達により構造物の地震動応答解析も高い水準 にある.このような要素技術を統合し,予測・想定 に基づく地震防災・危機管理システムを開発するこ とがひとつの方法として考えられる.著者らの研究 グループは,上記を背景として,統合地震シミュレ ータ(Integrated Earthquake Simulator, IES, 図 1 参照)の開発を行ってきた^{1,2)}. IES は, GIS/CAD データ等の都市デジタルデータから構築した仮想現 実都市と数値シミュレーションを組み合わせること により,想定した地震シナリオについて震災の諸過 程を予想・想定するシステムである. IES は,1) GIS/CAD データから構築された仮想現実都市,2) 断層から地表までの地震動の生成過程を解析する地 震動シミュレータ,3)鋼構造・コンクリート構 造・土構造・建築構造物などの構造物応答をシミュ レーションする解析ツール,4)人の動きなどを踏 まえた災害シミュレータからなる.これらを踏まえ て震災を総合的に評価し,分かりやすく高度な震災 情報を提供する.デジタルデータ群を管理する基幹 システムと各事象・構造物の数値解析ツールをプラ ットフォーム・プラグイン仕様で結びつけている. 震災の諸過程を数値シミュレーションの積み重ねに よって評価でき,客観的な高度震災情報を提供でき ることがIESの特徴である.

3. 適用例

現在までに IES のプロトタイプが完成している. 本節では,プロトタイプによる震災シミュレーションの例を示す.

3.1 IES プロトタイプの適用例 1

以下は,兵庫県神戸市((東経 135°00 00 , 北緯 34°36 00)~(東経 135°28 00 ,北緯 34°51 00))を対象地域として,旧神戸市街地 の仮想現実都市を構築し,IES プロトタイプによる 解析を行った例である.

3.1.1 都市モデルの構築1

ボーリングデータ,50m メッシュ標高データ,建 物平面幾何形状データ,建物種別,橋梁図面などの デジタルデータを用いて,計算機上に地盤構造・橋 梁・建築構造物からなる仮想現実都市・神戸を構築 する.限られたデータ内で構築しているため,ここ で構築した仮想現実都市神戸もプロトタイプの段階 である.図2に対象領域と建築構造物群を図示する. 解析領域内には,573099 棟の建築構造物が存在す る.

図 2 に示した全領域を対象とした解析²⁾も行った が,分かりやすさのため,神戸近傍((東経 135° 17 40 ,北緯 34°42 58.5)~(東経 135° 18 4.5 ,北緯 34°43 19.5))の 500× 700[m]の領域に絞って概要を説明する.図3にこの 領域での仮想現実都市神戸を示す.これは,地盤構 造・橋梁・建築構造物からなっている.

対象領域内のボーリングデータ及び数値地図 25000(標高データ)を利用し,F.Yangら¹⁾の方法に より三次元地盤構造を推定した(図4).地表面形 状には大きな起伏・変化がみられないが,工学的基 盤と堆積層との境界面形状は図に示すようにやや南 西向きに落ち込む複雑な構造をもっている.

線形・縦断図や下部工関係図・横断図・側面図から,形状データ及び位置データを抽出し,対象領域内の橋梁のデジタル三次元データを作成した.このデジタル三次元データは,図5に示すように,部材単位で固有の ID を割り振ったデータ構造をもっており,様々なデータ加工等を簡便に行うことができる.

建築構造物の平面形状データと建物の種類・用途 を用いて建築構造物群を作成した.対象とする領域 には,1261 個の構造物があり,ひとつひとつの構 造物に ID を割り振り,各構造物毎にデータファイ ルを作成している.個々のデータファイルには,位 置データ,三次元形状データ,種類,用途が格納さ れている.

この仮想現実都市では,前述のように,データ構 造を定義しながら,個々の構造物に対してファイル を割り振り,固有の ID により管理することにより, データのハンドリングを容易にしている.例えば, ID を指定することにより,自由に都市のデータを 抽出することができる.さらに,それぞれのデータ に対応して,データを加工し,モデル化も容易に行 うことができる.例えば,構造解析でよく用いられ る質点系にモデル化することも容易である(図6). 3.1.2 震災評価解析 1

上記で構築した仮想現実都市神戸を用いて,プロ トタイプの統合地震シミュレータにより震災シミュ レーションを行う.このプロトタイプのIESには, 1)地震動シミュレータ:^{6,7)}の三次元FEM強震動シ ミュレータ,2)橋梁動的シミュレータ:三次元線 形弾性体FEMによる構造解析シミュレータ,3)建築 構造物シミュレータ:近似モード解析法を¹⁾の仕様 としたシミュレータ,がプラグインされている.

三次元地盤構造の影響,波動伝播の位相効果を考察するため,以下の Case 1~Case 3の3ケースについてシミュレーションを行った.

Case 1:3.1 で推定した 3 次元地盤構造に地震動 が鉛直下から入射された場合

Case 2:1 次元的に簡略化された地盤構造に地震 動が鉛直下から入射された場合

Case 3:3.1 で推定した 3 次元地盤構造に地震動 が x 軸周りに 5 ° 傾いて入射された場合

Case 2 の簡略化された地盤は,地表面・地層の境 界面の平均値をもとめ,水平成層構造としたモデル である.地盤構造モデル下端から,東西方向,南北 方向に中心周波数 1.0[Hz],中心時間 1.0[sec]の RickerWavelet を入力した.また,後述する被害評 価のため,Case 2 の最大速度が神戸鷹取地震波の

500 [m]

図 3: 仮想現実都市神戸(500×700[m])

 Wide mode

 Wide mode

 Wide mode

 Wide mode

図 7:建物被害分布

最大速度(東西方向 70.8[kine],南北方向 70.4[kine])に等しくなるように振幅を補正した.

地表面最大速度分布を図 7(a)に,建築構造物の 動的応答解析の結果として最大層間変位角の分布を 図 7(b)に示す.

Case 2 は水平成層構造としてモデル化されているため,一様な地震動分布となっている.そのため,同形式の構造物ではすべて同じ層間変位角になっている.

これに対し Case 1,3 のように三次元地盤構造を もつケースでは,領域内において顕著な地震動分布 の偏りがみられた.このため,同様の構造種別でも 最大層間変位角に大きなばらつきが見られた.

構造物の種類毎に小破・大破の閾値を設定^{8,9,10,11)} し,最大層間変位角から損傷度を評価し,被災評価 を行った.被災分布を図 7(c)に示す.被災状況に おいて構造物の種類だけでなく地域的な偏りが見ら れる.これは,同じ構造形式の建築構造物であって も,その立地条件により入力される地震動が異なる ためであり,近傍の地盤構造が被災分布に影響を及 ぼしうることを示している.

被害評価例として,大破に1.0,小破に0.5 という値を与え,都市全体の建築構造物の被災額を試算した(表1).Case 2 では他の2つと比較すると被災状況が約15%少なく試算されている.地盤構造を水平成層構造とし3次元構造による影響を無視したために,その被災状況が少なく評価されたと思われる.Case 1 と Case 3 とでは同程度の被災状況の試算になっているが,被災の集中している建物種別が異なり,基盤面への入力地震動の位相差の有無によって

表1: 被災額の試算結果

	木造	無壁舎	RC	SRC	合計
case 1	545.0	62.0	28.0	19.0	654.0
case 2	525.0	17.5	13.0	9.5	565.0
case 3	500.0	105.5	19.5	19.0	644.0

a) Soil structure

b) Buildings 図 10:仮想現実都市モデル

生じた地震動の性質の差が,この内訳に現れていると言え,統合地震シミュレータはこのような差異も 捉えうることがわかる.

上記の Case 1~Case 3 で得られた強震動データ を用いて,橋梁の動的応答解析を行った.最大 von Mises 応力分布図を図 8 に示す.応力値は最大値が 1 となるように正規化している.各ケースで各橋脚 や桁にかかる応力にばらつきが現れ,応力の分布が 異なっていることが分かる.

3.2 IES プロトタイプの適用例 2

前節で示した IES プロトタイプは,二次被害の推定についての検討が不十分であった.本節の適用例では,エージェントシミュレーションを組み込み二次被害推定の検討を試みた.

3.2.1 都市モデルの構築2

東京都下のあるターミナル駅近傍 1500[m] × 1500[m]を対象として,既存の都市情報から仮想現 実都市モデルを構築した(図 10).構築した都市モ デルは,地盤構造,地上建築構造物,地下構造物, 道路ネットワークから構成されている(それぞれ図 10(a),(b),(c),(d)).以下にそのモデル化の概要を 示す.

ボーリングデータと 50m メッシュ標高データから, 工学的基盤面より上層の地盤構造モデルを作成した (図 10(a)).ボーリングデータには地層境界面の深 度と各地層の地盤物性が,50mメッシュ標高データ には 50mグリッドの標高が記載されている.これ らの情報をもとにKriging法¹²⁾により,三次元地盤 構造モデルを推定した.

3 次元幾何形状が含まれている市販地図ソフトデ

ータを使用して,幾何形状と各種属性情報から構成 されている地上建築構造物モデルを作成した(図 10(b)).地図ソフトデータには建物外形の三次元幾 何形状情報のみが含まれており,これを用いて各種 属性情報を推定した.このモデルは近似モード解析 のような簡便解析には十分であるが,詳細なモデル を必要とする解析には現状では不十分である.対象 領域内には 1102 棟の構造物が存在しており,それ ぞれ木造,鋼構造,RC構造,SRC構造のいずれかの 構造種別属性に分類している.

3D CAD データが整備されていないため,2D CAD データから地下構造物(地下通路)モデルを作成した (図 10(c)).作成した地下構造物モデルは三次元の サーフェス(面)データを持っており,後述するエー ジェントシミュレーションに直接適用可能である. また,三次元有限要素法のような,立体的なモデル が必要となる場合には,体積の推定等データ補完が 別途必要となる.

国土地理院発行の 25000 分の 1 の数値地図を用い て道路モデルを構築した(図 10(d)).数値地図の道 路情報にはノード・リンク形式の道路中心線情報と 道路幅情報が含まれている.作成した道路モデルは, ノード・リンクデータと道路属性情報から構成され ており,後述するエージェントシミュレーションの ため,道路幅員を用いてサーフェス(面)データを作 成している.対象領域内には 379 の道路節点と 433 の道路リンクが存在している.

以上の各構造物モデルは主に外形情報と属性情報 から構成されており,都市モデル内で固有の ID 番 号によってそれぞれ管理している,また,複数の部 材から構成されている構造物は,部材毎に ID を割 り振り,個別に管理する形を取っている.このため, 情報の抽出や属性の変更・追加が容易に可能な仕様 となっている.

3.2.2 IES による震災評価解析 2

構築した仮想現実都市モデル及び IES のフレーム ワークを用いて,関東地震を想定した都市の震災シ ミュレーションを行った.

強震動シミュレータには統計的グリーン関数法³⁾ と一次元重複反射理論を,構造物応答解析には近似 モード解析と三次元線形弾性体有限要素法,建築構 造物被害による道路閉塞判定手法を,人の避難解析 にはマルチエージェントシミュレーション⁴⁾を,そ れぞれ組み込んだ.道路閉塞判定手法は,大破建築 構造物の周囲に建築物高さから推定した瓦礫流出バ ッファを作成して周囲道路の閉塞を判定する手法⁵⁾ である.

強震動シミュレータによる想定関東地震波による 都市内の揺れの分布を計測震度として図 11 に示す. 1500[m]×1500[m]という狭い範囲でも震度に大きな 偏りが生じている.次に,建築構造物の被害分布を 図 12 に示す.ほとんどの建物が被災しており,大 破している建物もみられる.大破したこれらの建築 構造物によって,図 13 に緑色で示すように道路閉 塞が起こることが予想される.大破した建築構造物 は数える程しかないが,対象領域中心部分のほとん どの道路が閉塞していることが分かる.地下構造物 周辺の震災前後の状況を図 14 に示す.地下構造物 の出入り口は4箇所あるが,地震被害によって3箇 所が閉塞している.

最後に,上記の道路ネットワーク及び地下構造物 の構造被害評価を元に,災害時の人間の避難シミュ レーションを行った.全領域で解析を行ったが,簡 単のため,地下構造物近傍領域に絞って説明する. 震災無しの場合と震災有りの場合で避難シミュレー ションを行った結果を表2に示す.人を模したエー ジェントの数は200とし,解析時間を800秒間とし た.両者の比較から,震災時の避難人数が大幅に減 っていることが分かる.これは,周囲の構造物及び 地下街の被害により,地下街の出入り口が閉塞した ことが主因と考えられる.地下街のような閉塞性の 高い構造物において出入り口等の設置を計画する際 には,本解析評価のように周辺構造物被害までを考 慮することが望ましいと思われる.

4.まとめ

IES は,地震時の都市挙動を数値シミュレーショ ンで予測・想定し,得られた結果を分かりやすく提 示することで,事実の明示化を行い,震災に対する 共通認識を市民・行政・技術者間に醸成することを 目指している.現在までに,IES のプロトタイプが 完成しており,本論文においてその適用例をいくつ か示し,その有効性を示した.今後はネットワーク 被害及び人的被害評価組み込みの検討を進めるとと もに,適用する解析手法やデータの精度・モデル化 手法の評価を行い,それぞれ必要十分な手法・精

図 11:地表面震度分布

図 12:構造物被害状況

図 13:道路閉塞状況

度・情報量を把握し,精度の向上を図ることが今後の課題である.

参考文献

- F. Yang, T. Ichimura, and M. Hori, Earthquake Simulation in Virtual Metropolis Using Strong Motion Simulator and Geographic Information System, Journal of Applied Mechanics JSCE, Vol.5, pp. 527-534, 2002.
- 2)市村強、伊丹洋人、佐茂隆洋、堀宗朗、山口直也、デジタルシティ神戸の構築とその震災シミュレーションへの応用に関する基礎検討、構造工学論文集 JSCE、

Dana@d 図 14:地下通路周辺被害

表2:避難解析結果

	通常時	震災時
避難完了人数	136	71
避難完了平均時間(秒	383.2	289.1

Vol.51A, pp. 513-520, 2005.

- 3) 壇一男,渡辺基史,佐藤俊明,宮腰淳一,佐藤智美, 統計的グリーン関数法による 1923 年関東地震 (M_{JMA}7.9)の広域強震動評価,日本建築学会構造系論文 集 第 530 号, pp. 53-62, 2000.4.
- 4) 堀宗朗,犬飼洋平,小国健二,市村強,地震時の緊急 避難行動を予測するシミュレーション手法の開発に関 する基礎的研究,社会技術研究論文集, Vol.3, pp. 138-145,2005.
- 5) 独立行政法人防災科学技術研究所,建物倒壊および 道路閉塞のシミュレーション技術の開発,大都市大 震災軽減化特別プロジェクト成果報告書,2002-2004.
- 6) T. Ichimura and M. Hori, Macro-Micro Analysis Method for Wave Propagation in Stochastic Media, *Earthquake Engineering & Structural Dynamics*, Vol.35, pp 419-432, 2006 April, DOI: 10.1002/eqe.533.
- 7) T. Ichimura and M. Hori, Strong Ground Motion Prediction using Macro-Micro Analysis Method, *Earthquake Engineering & Structural Dynamics*, Vol.35, pp 395-417, 2006 April, DOI: 10.1002/eqe.532.
- 8) 建築基準法施行令, 1995.
- 9) 国土交通省住宅局建築指導課他: 2001 年版 限界耐力 計算法の計算例とその解説, 2001.
- 10) 林康裕: コミュニティーレベルの適応的マネジメント

のための地震被害シミュレータの開発,2002.

- 11) 川瀬博: 建物の地震被害の予測とその軽減への展望, Journal of Geography, 110(6) pp.885-889, 2001.
- 12) Hans Wackernagel 原著,地球統計学研究委員会訳編, 青木謙治監訳:地球統計学,2003.