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Abdgtract:  In this paper, we will suggest the useful beam element which enables us to analyze truss beams
involving the elastoplastic buckling behavior of chord members without constructing discrete model. In this
element, multi-surfaces for the yielding and buckling behavior are considered in the space of (M;, M;, N).
Each couple of surfaces corresponds to the yielding and buckling strength of each chord member in a truss
beam. It is assumed that total nodal displacement can be expressed in the form of additive decomposition of
elastic, plastic and buckling components. Furthermore, we describe that it is possible to evaluate the effect of
buckling behavior of a chord member as the isotropic softening behavior for only a couple of surfaces in the
space of (M;, M;, N). Finally we will examine the validity of our beam element through a numerical example.

1. INTRODUCTION

We consider a truss beam as shown in Figure 1(a). This truss beam belongs to the Warren truss
type. Usually structural designers do not directly analyze such huge structures as are composed with
many truss beams since such analytical models have much more freedom degree number and are very
costly. Then an effective continuous model in which a truss beam is replaced with a single beam
element shown in Figure 1(b), is usually used when analyzing the dynamic behavior of such a huge
structure. The continuous model could not applied to the plastic problem until we developed a truss
beam element which enabled us to simulate elastoplastic problem (Motoyui et al.(2000b)). However,
chord members buckle and can not carry an axial force as soon as they yield in compression. In this
paper, we will describe the consistent and convenient truss beam element to consider the elastoplastic
buckling behavior of chord members in the continuous model.

At first, we explain that the elastoplastic buckling behavior of a chord member can be
approximately represented as the plastic behavior with softening under the assumption that its
slenderness ratio is the less(Motoyui et al.(2000a)). Next, we formulate the truss beam element based
on the thermodynamics approach. Finally we show the validity of the present element by comparison
with results by a discrete model of which chord members are divided by standard beam elements.
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(a) Discrete model (b) Effective continuous model
Figure 1 Two types of truss model
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2. BASIC EQUATIONSFOR CHORD MEMBER

It is assumed that the Helmholtz free energy ¢, for the a th chord member which consist of an
elastic straight bar and a perfect elastoplastic rotary spring in Figure 2(b) can be written by

(// (uaﬂeasuc?’ng) {;nka(u_a_ug _I eazj +% K (9 gp)} (1)
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where U, and 8, are a total stretch and total rotation, u? and 8P are plastic components of a stretch
and a rotation, and K, and K, are an elastic stiffness of a bar and an elastic stiffness of a rotary spring.
The sub-suffix & means the value of the a-th member. In this paper, it is asumed that & is always

positive and a chord member does not buckle until its member yields.
Substituting in the Clausius-Duhem inequality; —¢& +n,& =0 from Eq.(1) gives
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where /7 is called the plastic dissipation term and this expression mean variables of n, and ngl 6, are
thermodynamic force to u? and 6P respectively. The yield function at the rotary spring;
®,(n,.,m,) = (n,/n,f +|m,|/m 1< 0 can be rewritten in the form
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Here, the principle of maximum plastic dissipation is introduced to specify the post-buckling
behavior. So consider the Lagrangian; L, =-/, + #®, where M is a plastic consistent parameter.
Differentiation of the Lagrangian with respectto n, or 6, gives
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These equations are called evolution equations. Furthermore, if the yield condition of Eq.(3-a) is
active then the following Kuhn-Tucker complementary conditions must be satisfied
®,=0, & =0 and AR=20 (5)
Now consider the case that member’s slenderness ratio is much less. In this case, the assumption
that 6, is approximately equal to &) is satisfied. Then the yield function of Eq.(3) can be rewritten
in the form
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(a) Truss element (b) Elastoplastic buckling model
Figure 2 Single chord member
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We introduce an effective plastic-buckling component u® which is defined by the form of additive
decomposition.

ureupen,  uw=legr & =& +1,0060 = R )
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From the third loading condition of Eq.(5-c), the necessary condition to satisfy the second law of
thermodynamics is given by

>0 (8)
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3. EXTEND TO TRUSSBEAM

3.1 Basic Equationsfor Truss Beam
The Helmholtz free energy & for the whole of a truss beam can be given by the sum of each
member’s Helmholtz free energy (.

all
=2 4,0,.6,.u2.67) ©)

This equation can re rewritten in the form
w=tuhe +2 5 ko, -ef <3 (10)

where ()" signifies transpose, k® is an elastic stiffness matrix for an effective continuous model and
U is the effective elastic component of the nodal relative displacement&i. And we assume that total
component U can be rewritten by the form of additive decomposition.

T=0¢ 4+, 0 =(5 § 4) (11)
where UPandi® are the plastic and buckling components of the nodal relative displacement.
Furthermore, the assumption of @ =°(u?) and @ =@®(g,) is introduced.

Fle)-3g=Swg. )35 &=3nd (12
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In this case, the Clausius-Duhem inequality can be rewritten as -+ f "§=0. f is the nodal forces;
fT= <N M, M j> . Then substituting in this inequality from Eq.(10) gives

{ —kea) g S[17he -2, k6, -0 ] + 5[t Thewp 42, k, (6, - 62 )] 20 (13)

For this inequality equation to be true for all values of T or &, , their coefficients must be zero,
giving

f =kT*, fThe =2,k,(6, - 67), i[fThN% fhede] > 0 (14)
a=1

The third equation represents the dissipation term. By comparison with Eq.(2-c), it is understood that
both hPand h?can be represented by h, which is defined by n, = f'h, (as shown in Figure 3).
h? =h,, he =h,l 6, (15)
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And from Eq.(3), the yield function for a truss beam model can be expressed in the form

o(1.6)-1"" 7 (6)<0 (16

The expression of Eq.(15) and Eq.(16) means that both plastic and buckling component rate are
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proportional to the gradient of the yield surface. Namely the associate flow rule is satisfied in this
model. It is noted that Eq.(12) is similar to the extended Koiter’s form.

For simplicity, assume that the case that member’s slenderness ratio is much less. In this case, the
assumption that 6, is approximately equal to 8is satisfied. Then the yield function of Eq.(16) can be
rewritten in the form

;
o, r.12)- 0
y

where 7,i1s an effective yield stress. Consequently the above assumption enables to treat the

elastoplastic buckling problem as the plastic problem with the hardening (softening) specified with

Eq.(17-b). And the yield surface becomes to be so-called multi-surface in (M, M;, N) space as

Eq.(17-a) must be satisfied at a=1,all. Here we introduce an effective plastic-buckling component

™ which is defined by G®=0G"+0"and & =& +& . Substituting in the latter equation from
Eq.(12) and comparing with Eq.(7) gives

T
go=S1fhpp v 1 fhah;& OR=0 for ®,<0 (18)
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This equation is the plastic flow rule for the present method. Furthermore, the hardening (softening)
coefticient can be calculated by

o7, 06) n,l 1
#L — a a —__'aa Agl 19
“T067 0 1em’ 7 (g} ° (19)

The yield function, the plastic flow rule and the hardening (softening) property are clarified.
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[ O gravity of axial force for each chord member

Figure 3. Local coordinate system

3.2 Consistent Tangent Stiffness Matrix
Since & =0 foral active substituting in it from Eq.(18) and Eq.(19),

é’ a‘p &—ﬂ% :L na aT e{@_&pb}_ara%
of 922 " " n, [n,| oA
(20)
1n 1 n oT,
=— 2 hKkHF- Y ——Lh -1 R
ny |n | { E%Ve ny |n5| g ﬁ} 6/\2
Then we have the simultaneous equations respect to A& as follows;
> G,A —_h Tke for o O active (21)
POactive y | |
h =1 e Mo pvyep — Nlo :kronecker’s delta symbol (22
where G, =——-—h, k°h, -—2L ¢, d,; ‘kronecker’s delta symbo (22)

n,’ n,| |nﬂ| 1m’a,> "

a



3

By solving this simultaneous equation, we can find the plastic consistency parameter A% .
n
f=l v gulbyreg (23)
ny Blactive |n5|
where Ggp is the inverse of GP?. And from the nodal force rate the consistent tangent stiffness matrix
k* is given

E=lke-L 3y D gerfcen )0 (keh,) [f= kel (24)

ny qUactive £1 acuve|n | |n/3|

where 0O signifies tensor product.

3.3 Numerical implementation to calculate nodal force vector
The present calculation method of a nodal force vector belongs to the Return Mapping Algorithm
for the Multi-surface yield function (Simo et al.(1988)). The values of 'G°,'A" and‘'@” in the

configuration at t=t and ““U at t=t+ A4t are assumed to be known.

Elastic predictor : Any incremental plastic deformation is frozen; 4Ai™ =0, "G™="T", 44 =0,
nApp=tap, "@gr=g° By using these values, trial values can be calculated by
2 tri ri
trial f - ke(t+Atu_triaJupb) trlal— =1+ ny Ia ‘ algp nylgI 819; (25)
’ o 16m ’ 4m
p p
Thus, the trial value of the yield function is given by
trlaJ T
trlal¢> (trlal f trial ep) — | a _ trial Ta (26)
n

y
If "®@,is greater than zero, then the plastic corrector must be execute since the rotary spring is in
plastic loading. Otherwise, it is in elastic state including unloading state.

Plagtic corrector : The stress by the actual plastic deformation is relaxed. The value of the nodal force
vector and the effective yield stress at t=t+ At can be rewritten in the form

\/ n1,’ (g2 + 262f ), ("g2 + 467)

t+4t f :trian _ keda pb , t+AtT

(27)
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Inserting Eq.(27) into the yield function gives the nonlinear simultaneous equations with respect to
AN (a Dactive) . Then we solve them by Newton method.

t+At¢ Dt+At¢ + Z al+m¢a O-A/‘p
(kﬂ) ‘ (k) B PBOactive aA/]Z g
a e cap | for aOactive (28)
_t oW s orpe (k) Na'a
_t('f)t(D"_ Z T2 ea t+t a k*h, = 2 ted = 2 5‘7’/3 AN
Blactive| N (k) n, () nﬁ 16mp (k)aa
Solving these linear equations and updating each values.
l t+At t+Atn l
tJ:rAtpr:HAtpr_i_ L ()N h, Wp tiﬁtep t+m9p+ (k)" _ Jmp (29)
(k+1) (k) a%;ive n, t-zf;na (k+1) (k) ”(f;ng 4mp sztaa
n1, taev _nlder
EAf k(T ), s, (A = e e e (30)
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where lower index (K) signified iteration number. Repeat these calculations until

k+1



4. NUMERICAL EXAMPLES

Finally we show two numerical examples in Figure 4 and Figure 5 to valid the present method.
One example is subjected to monotonic loading and another is subjected to cyclic loading. The present
results are calculated with only one element, and another is done with the model of which chords are
divided by 10 elastoplastic beam elements. The mechanical properties of analytical model: Truss
length; 34.6m, Height; 10m, Slenderness ratio of chord members; 40 (partially 20). The material
properties: Young’s modulus; 206GPa, Elastic-perfectly plastic material, Yield stress; 235MPa. Two
equilibrium paths are close and this means the present method is valid.
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5. CONCLUSIONS

In this paper, we described the consistent and convenient analytical method to simulate truss
beam problems including with the elastoplastic buckling behavior of chord members, and clarified that
such problems reduce to the pure elastoplastic problem under the condition that a chord member’s
slenderness ration is much less. Furthermore the validity of the present method was examined through
the numerical examples.
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