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Abstract:  In this paper, we will suggest the useful beam element which enables us to analyze truss beams 
involving the elastoplastic buckling behavior of chord members without constructing discrete model. In this 
element, multi-surfaces for the yielding and buckling behavior are considered in the space of (Mi, Mj, N). 
Each couple of surfaces corresponds to the yielding and buckling strength of each chord member in a truss 
beam. It is assumed that total nodal displacement can be expressed in the form of additive decomposition of 
elastic, plastic and buckling components. Furthermore, we describe that it is possible to evaluate the effect of 
buckling behavior of a chord member as the isotropic softening behavior for only a couple of surfaces in the 
space of (Mi, Mj, N). Finally we will examine the validity of our beam element through a numerical example.  

 
 
1.  INTRODUCTION 
 

We consider a truss beam as shown in Figure 1(a). This truss beam belongs to the Warren truss 
type. Usually structural designers do not directly analyze such huge structures as are composed with 
many truss beams since such analytical models have much more freedom degree number and are very 
costly. Then an effective continuous model in which a truss beam is replaced with a single beam 
element shown in Figure 1(b), is usually used when analyzing the dynamic behavior of such a huge 
structure. The continuous model could not applied to the plastic problem until we developed a truss 
beam element which enabled us to simulate elastoplastic problem (Motoyui et al.(2000b)). However, 
chord members buckle and can not carry an axial force as soon as they yield in compression. In this 
paper, we will describe the consistent and convenient truss beam element to consider the elastoplastic 
buckling behavior of chord members in the continuous model.  

At first, we explain that the elastoplastic buckling behavior of a chord member can be 
approximately represented as the plastic behavior with softening under the assumption that its 
slenderness ratio is the less(Motoyui et al.(2000a)). Next, we formulate the truss beam element based 
on the thermodynamics approach. Finally we show the validity of the present element by comparison 
with results by a discrete model of which chord members are divided by standard beam elements. 

(a) Discrete model        (b) Effective continuous model 
   Figure 1  Two types of truss model 
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2. BASIC EQUATIONS FOR CHORD MEMBER 
 

It is assumed that the Helmholtz free energy ψα for the α th chord member which consist of an 
elastic straight bar and a perfect elastoplastic rotary spring in Figure 2(b) can be written by 
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where uα and θα are a total stretch and total rotation, puα  and p
αθ  are plastic components of a stretch 

and a rotation, and nkα and mkα are an elastic stiffness of a bar and an elastic stiffness of a rotary spring. 
The sub-suffix α means the value of the α-th member. In this paper, it is asumed that θ is always 
positive and a chord member does not buckle until its member yields.  
Substituting in the Clausius-Duhem inequality; 0≥+− αααψ un && from Eq.(1) gives 
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where Γα is called the plastic dissipation term and this expression mean variables of nα and nαlαθα are 
thermodynamic force to puα  and p

αθ  respectively. The yield function at the rotary spring; 
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Here, the principle of maximum plastic dissipation is introduced to specify the post-buckling 
behavior. So consider the Lagrangian; αααα ΦλΓ pL &+−=  where p

αλ&  is a plastic consistent parameter. 
Differentiation of the Lagrangian with respect to αn  or αθ  gives 
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These equations are called evolution equations. Furthermore, if the yield condition of Eq.(3-a) is 
active then the following Kuhn-Tucker complementary conditions must be satisfied 
   0=αΦ , 0=αΦ&    and 0≥p

αλ&      (5) 
Now consider the case that member’s slenderness ratio is much less. In this case, the assumption 

that αθ  is approximately equal to p
αθ  is satisfied. Then the yield function of Eq.(3) can be rewritten 

in the form 
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(a) Truss element   (b) Elastoplastic buckling model 
Figure 2  Single chord member 
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We introduce an effective plastic-buckling component pbuα  which is defined by the form of additive 
decomposition. 
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From the third loading condition of Eq.(5-c), the necessary condition to satisfy the second law of 
thermodynamics is given by 
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3. EXTEND TO TRUSS BEAM 
 
3.1 Basic Equations for Truss Beam 

The Helmholtz free energy Ψ for the whole of a truss beam can be given by the sum of each 
member’s Helmholtz free energy ψ. 
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This equation can re rewritten in the form 
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where ()T signifies transpose, ke is an elastic stiffness matrix for an effective continuous model and 
efu~ is the effective elastic component of the nodal relative displacement u~ . And we assume that total 

component u~ can be rewritten by the form of additive decomposition. 

   bpef uuuu ~~~~ ++= , ji
T θθδ ~~~~ =u      (11) 

where pu~ and bu~  are the plastic and buckling components of the nodal relative displacement. 
Furthermore, the assumption of ( )ppp uαuu ~~ ≡  and ( )αθ

bb uu ~~ ≡  is introduced. 
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In this case, the Clausius-Duhem inequality can be rewritten as 0~ ≥+− uf && TΨ . f is the nodal forces; 
ji

T MMN=f . Then substituting in this inequality from Eq.(10) gives 
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For this inequality equation to be true for all values of efu~ or θα , their coefficients must be zero, 
giving 
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The third equation represents the dissipation term. By comparison with Eq.(2-c), it is understood that 
both p

αh and b
αh can be represented by αh which is defined by αα hf Tn =  (as shown in Figure 3). 

    αα hh =p ,  αααα θlb hh =     (15) 
And from Eq.(3), the yield function for a truss beam model can be expressed in the form 
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The expression of Eq.(15) and Eq.(16) means that both plastic and buckling component rate are 
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proportional to the gradient of the yield surface. Namely the associate flow rule is satisfied in this 
model. It is noted that Eq.(12) is similar to the extended Koiter’s form. 
For simplicity, assume that the case that member’s slenderness ratio is much less. In this case, the 
assumption that θα is approximately equal to p

αθ is satisfied. Then the yield function of Eq.(16) can be 
rewritten in the form 
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where ατ is an effective yield stress. Consequently the above assumption enables to treat the 
elastoplastic buckling problem as the plastic problem with the hardening (softening) specified with 
Eq.(17-b). And the yield surface becomes to be so-called multi-surface in (Mi, Mj, N) space as 
Eq.(17-a) must be satisfied at α=1,all. Here we introduce an effective plastic-buckling component 

pbu~ which is defined by bppb uuu ~~~ += and bppb uuu &&& ~~~ += . Substituting in the latter equation from 
Eq.(12) and comparing with Eq.(7) gives 
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This equation is the plastic flow rule for the present method. Furthermore, the hardening (softening) 
coefficient can be calculated by 
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The yield function, the plastic flow rule and the hardening (softening) property are clarified.  
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Figure  3. Local coordinate system 

 
 

3.2 Consistent Tangent Stiffness Matrix 
Since 0=αΦ&  for active∈α , substituting in it from Eq.(18) and Eq.(19), 
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Then we have the simultaneous equations respect to αλ&  as follows; 
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By solving this simultaneous equation, we can find the plastic consistency parameter αλ& . 

   ∑
∈

=
active

eT

y

p

n
n

G
n β

β
β

βαβ
αλ ukh && ~1       (23) 

where Gαβ is the inverse of Gβα. And from the nodal force rate the consistent tangent stiffness matrix 
epbk  is given  
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where ⊗  signifies tensor product. 
 
3.3 Numerical implementation to calculate nodal force vector 

The present calculation method of a nodal force vector belongs to the Return Mapping Algorithm 
for the Multi-surface yield function (Simo et al.(1988)). The values of ptu~ , pt

αλ  and pt
αθ  in the 

configuration at t=t and u~tt ∆+  at t=t+∆t are assumed to be known. 
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Thus, the trial value of the yield function is given by 
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If αΦtrial is greater than zero, then the plastic corrector must be execute since the rotary spring is in 
plastic loading. Otherwise, it is in elastic state including unloading state. 
 
Plastic corrector : The stress by the actual plastic deformation is relaxed. The value of the nodal force 
vector and the effective yield stress at t=t+∆t can be rewritten in the form 
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Inserting Eq.(27) into the yield function gives the nonlinear simultaneous equations with respect to 
( )activep ∈αλ∆ α . Then we solve them by Newton method. 
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Solving these linear equations and updating each values. 
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where lower index (k) signified iteration number. Repeat these calculations until ( ) Tolerancett
k ≤+
+ α
∆ Φ1 . 
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4. NUMERICAL EXAMPLES 
Finally we show two numerical examples in Figure 4 and Figure 5 to valid the present method. 

One example is subjected to monotonic loading and another is subjected to cyclic loading. The present 
results are calculated with only one element, and another is done with the model of which chords are 
divided by 10 elastoplastic beam elements. The mechanical properties of analytical model: Truss 
length; 34.6m, Height; 10m, Slenderness ratio of chord members; 40 (partially 20). The material 
properties: Young’s modulus; 206GPa, Elastic-perfectly plastic material, Yield stress; 235MPa. Two 
equilibrium paths are close and this means the present method is valid. 

 
 
 
 
 
 
 
 

(a) Load displacement curve    (b) N-Mi space 
Figure 4  Numerical results (monotonic loading) 

 
 
 
 
 
 
 
 

(a) Load displacement curve    (b) N-Mi space 
Figure 5  Numerical results (cyclic loading) 

 

5. CONCLUSIONS 
In this paper, we described the consistent and convenient analytical method to simulate truss 

beam problems including with the elastoplastic buckling behavior of chord members, and clarified that 
such problems reduce to the pure elastoplastic problem under the condition that a chord member’s 
slenderness ration is much less. Furthermore the validity of the present method was examined through 
the numerical examples. 
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