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Abstract:  Fundamental studies on elastic waves propagating in the presence of obstacles such as cavities, 
embedded footings and underground tunnels are important in earthquake engineering.  Previous studies 
have been restricted to the case where the surrounding medium is considered to be linear elastic.  In this pa-
per, the effect of pre-stress on the scattering of plane SH-waves from a circular cylindrical cavity in a com-
pressible isotropic elastic medium, is studied.  The complex function method is employed to analyze the in-
cremental boundary value problem.  The spatial variables (x1, x2) are mapped on to two different complex 
planes, to represent the series solution of the incident waves and the scattered waves.  The coefficient of 
each term in the series solution can be computed numerically from a set of linear simultaneous equations, 
which are constructed by satisfying the incremental traction free boundary condition along the surface of the 
cavity.  Varga material is assumed in the numerical example and in the absence of pre-stress, the analytical 
solution for linear isotropic elastic case is recovered.  Varying the values of principal stretches, the effect of 
pre-stress on the speed of incident SH-waves and the dynamic stress concentration factor along the surface of 
the cavity is clearly seen.   

 
 
1.  INTRODUCTION 

 
The dynamic response due to seismic waves, of underground structures such as foundations of su-

perstructures, transportation tunnels or pipelines, is an important engineering problem.  There are 
many previous studies on the analysis of wave scattering problems, where linear elastic assumptions 
are used, e.g., analysis of SH-waves scattered from a rigid semicircular cylinder embedded in isotropic 
half-space (Wijeyewickrema and Keer, 1986) and dynamic stress concentration analysis for SH-wave 
scattering from a cavity in a linear anisotropic elastic medium (Liu 1988; Liu and Han, 1993; Han et. 
al. 1995).  However, considering that the earth is an initially stressed medium, it may be more appro-
priate to model the earth as a pre-stressed elastic medium.  In the last two decades, wave propagation 
problems in pre-stressed elastic media have been extensively studied but due to the complexity of the 
analysis, which comes from the effects of pre-stress, analytical results of wave reflection and scatter-
ing problems, have been limited to reflection of waves from a linear plane boundary or interface only 
(Ogden and Sotiropoulos, 1998 and Hussain and Ogden, 2001).   

In the present paper, SH-wave scattering from a circular cylindrical cavity in a compressible 
pre-stressed unbounded elastic medium is studied.  The complex function method is employed where 
the fundamental equations and formulation of the problem are given in Sec. 2.  The numerical results 
of two examples when the Varga strain energy function is assumed are given in Sec. 3, and the dy-
namic stress concentration factor and the non-dimensional displacement and stresses are plotted.  The 
conclusions in Sec. 4 are useful for engineering practice and further studies are suggested. 
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2.  FORMULATION OF THE PROBLEM 
 
2.1  Basic Equations 

Consider a homogeneous compressible isotropic elastic material with an initial unstressed state 
denoted by Bu, which after being subjected to pure homogeneous strains has the new configuration Be,  
the pre-stressed equilibrium state.  A Cartesian co-ordinate system 1 2 3,Ox x x  with axes coincident 
with the principal axes of strain, is chosen for the configuration Be.  Let u  be a small, time de-
pendent displacement superimposed on Be.  The incremental equations of motion for small time de-
pendent displacements superimposed on the finite quasi-static deformation and the component of in-
cremental nominal stress tensor ,0s  can be written as (Chapter 6, Ogden, 1984) 

 0 , ,jikl l jk iu uρ= &&A    0 0 , ,ji jilk k ls u= A  (1) 

where 0 jilkA  are the components of the fourth-order tensor of first-order instantaneous elastic moduli 
which relates the nominal stress increment tensor and the deformation gradient increment tensor, ρ  
is the material density in the current configuration and superimposed dot and comma indicate differen-
tiation with respect to time t  and spatial coordinate component in Be, respectively. 

The corresponding equations for anti-plane deformation where 3 3 1 2( , , )u u x x t=  and 1 2 0u u= =  
can be written as  

 01313 3,11 02323 3,22 3,u u uρ+ = &&A A   013 01313 3,1,s u= A   023 02323 3,2s u= A  (2) 

in which the instantaneous elastic moduli 01313A  and 02323A  are given in term of the strain energy 
function 1 2 3( , , )W λ λ λ  and the principal stretches , ( 1,2,3)i iλ =  as, 
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where ,i iW W λ= ∂ ∂  2
ij i jW W λ λ= ∂ ∂ ∂  and 1 2 3J λ λ λ=  (Roxburgh and Ogden, 1994). 

The incremental nominal stress components 0 3rs  and 0 3s θ  in the cylindrical coordinate system 

3( , , )r xθ  where 1 cosx r θ=  and 2 sinx r θ=  can be expressed as, 

 0 3 01313 3,1 02323 3,2 0 3 01313 3,1 02323 3,2cos sin , sin cos .rs u u s u uθθ θ θ θ= + = − +A A A A  (4) 

Since the complex function method is used from Eq. (4), the complex expression of non-dimensional 
stresses are obtained as, 

 2 2
0 3 0 3 3,1 3,2 0 3 0 3 3,1 3,2ˆ ˆ ˆ ˆ[ ]e , [ ]e ,i i

r rs is u iu s is u iuθ θ
θ θγ γ −− = − + = +  (5) 

where 2
01313 02323 ,γ = A A  0 3 0 3 02323ˆ r rs s= A  and 0 3 0 3 02323ˆ .s sθ θ= A  

 
2.2  Embedded Cavity and the Incident Plane SH-Wave 

Consider an infinitely long circular cavity embedded in an unbounded pre-stressed elastic solid as 
shown in Fig. 1.  The homogeneous principal stretches , ( 1,2,3)i iλ =  yield the corresponding ho-
mogeneous static principal Cauchy stresses , ( 1,2,3)i iσ =  (pg. 216, Ogden, 1984) and are given by, 

 



 / , ( 1,2,3).i i iW J iσ λ= =  (6) 
 

Since homogeneous principal stretches are assumed which yields homogeneous Cauchy stresses the 
internal static traction that should be applied along the inner surface of the cavity is 

 
 2 2

0 1 2 1 2( ) ( cos sin ) ( )cos sin ,r θθ σ θ σ θ σ σ θ θ= − + + −t e e     (7) 
 

where re  and θe  are unit basis vectors.  For the equibiaxially pre-stressed 1 2σ σ=  the traction 

0( )θt  in Eq. (7) corresponding to an internal static pressure (i.e., 0 1p σ= − ).  
The incremental displacement of the incident time harmonic plane SH-wave ( )

3 1 2( , , )iu x x t =  
1 2( cos sin )

0 e eik x xi tU α α αω +−  can be expressed in the polar coordinate system as 

 cos( )( )
3 0( , , ) e e ,ik ri i tu r t U α θ αωθ −−=  (8) 

where θ α=  is the direction of wave propagation, ω  is an angular frequency, /k cα αω=  is 

wavenumber, and cα  is wave speed in this direction, i.e., 2 2 2
01313 02323cos sincαρ α α= +A A  (pg. 

474, Ogden 1984).  Here the superscript (i) indicates the incident wave.  
 

 
 
 
 
 
 
 
 
 
Equation (8) may be expressed in the form of a Fourier series expansion (Liu, 1988) as, 
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∞
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where ( )nJ k rα  is the Bessel function of order n  with argument .k rα  
To use the complex function method introduce the complex variables,  

 1 2 e ,iz x i x r θ= + =   1 2 e ,iz x ix r θ−= − =    | | ,z r=   (10) 

which yields,  
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3,1 3, 3, 3,2 3, 3,, ( ),i i i i i i

z z z zu u u u i u u= + = −   (11) 
 
where ( ) ( )

3, 3
i i
zu u z= ∂ ∂  and ( ) ( )

3, 3 ,i i
zu u z= ∂ ∂  from which Eq. (9) can be expressed as 
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From Eqs. (5), (11) and (12) the stress components due to the incident wave can be written as 

Figure 1.  Unbounded pre-stressed material with cavity and the incident plane SH-wave. 
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2.3  Wave Scattering Solution 
When the incident wave ( )

3
iu  impinges on the surface of the cavity, the scattered wave ( )

3
su  is 

generated and the total displacement is the summation of both incident and scattered waves i.e., 
( ) ( )

3 3 3 .i su u u= +   For the scattered wave, another set of complex variables is introduced i.e., 
 
 1 2 (cos sin ),x i x r iη γ θ γ θ= + = +     1 2 (cos sin ),x i x r iη γ θ γ θ= − = −     (14) 
 

and hence, 
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Substituting Eq. (15) into Eq. (2a) yields 

 2 ( ) ( )
0 3, 34 ,s sc u uηη = &&  (16) 

where 0c  is the SH-wave speed in 1x -direction i.e., 2
0 01313.cρ = A  

Following the work of Liu et al., (1982) the solution of Eq. (16), which satisfies the radiation con-
dition when r → ∞  can be written as 
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where ,na  0, 1, 2,...n = ± ±  are arbitrary constants and (1)
0( | |)nH k η  is the Hankel function of order 

n  with argument 0 | |k η  and 0 0/ .k cω=  
The corresponding stress components are 
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The incremental boundary condition along the surface of a circular cavity with radius a  is ex-

pressed as 

 ( ) ( )
0 3 0 3ˆ ˆ( , ) ( , ) 0,i s

r rs z t s tη+ =  on | | .z a=  (19) 



Substituting Eqs. (13) and (18) into Eq. (19) yields 
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where,  
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Multiply both side of Eq. (20) with e imθ−  and integrating from π−  to π  yields a set of simulta-
neous equations: 

 , 0, 1, 2,n mn m
n

A mφ φ
∞

=−∞

= = ± ±∑ K  (22) 

where  
1

2 e im
mn n d
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π θ π
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=−
= ∫  and 1

2 e .im
m d

π θ
π θ π

φ φ θ−

=−
= ∫   The coefficients ,nA  0, 1, 2,...n = ± ±   

can be determined numerically by solving the above system of simultaneous equations.   
 
2.4  Dynamic Stress Concentration Factor 

Along the surface of the cavity, the dynamic stress concentration factor is defined as the ratio of 
incremental stress along the circumference to the maximum amplitude of the incident incremental 
stress at the same point.  For the time harmonic incident SH-wave given in Eq. (8), the maximum 
incremental stress is ( ) 2

max 02323 0.is k Uαγ= A   Therefore the dynamic stress concentration factor is   

 ( ) ( ) ( ) 2
0 3 max 0 3 0 3 0ˆ ˆ| | ( ).i i ss s s s k Uθ θ θ αγ= +  (23) 

 
 

3.  NUMERICAL RESULTS 
 

As mention in Sec. 2.1 the instantaneous elastic moduli 01313A  and 02323A  depend on the strain 
energy function of the material and the principal stretches.  In this section compressible Varga mate-
rial is assumed and the strain energy function is given as (Roxburgh and Ogden, 1994),  

 ( )
0 1 2 3 1 2 32 [ 3 ln( )].VW µ λ λ λ λ λ λ= + + − −  (24) 

From the definition of 01313 ,A  02323 ,A  and γ  in Sec. 2.1, Eq. (24) yields 

 2
01313 0 1 1 32 ( ) ,J µ λ λ λ= +A    2

02323 0 2 2 32 ( ) ,J µ λ λ λ= +A   2 31

2 1 3

.λ λλγ
λ λ λ

+=
+

 (25) 

In the absence of pre-stress (i.e., 1 2 3 1λ λ λ= = = ), Eq. (25) yields 01313 02323 0 ,µ= =A A  1γ =  
which from the orthogonal properties of e ,imθ−  0, 1, 2,...m = ± ±  the linear isotropic solution (pg. 
121, Pao and Mow, 1973) is recovered and the coefficient nA  in Eq. (22) can be expressed as  
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where in this case 0 0 0/k ω ρ µ=  is the wavenumber, 0ρ  and 0µ  are the material density and the 
shear stiffness in an undeformed configuration, respectively. 

For the pre-stressed material that is equibiaxially deformed in 1 2( )x x -plane (i.e., 1 2λ λ λ= = ), Eq. 
(25) yields 01313 02323 µ= =A A  and 1,γ =  where 2

0 1 1 32 ( )Jµ µ λ λ λ= +  is the shear stiffness of the 
material in the equilibrium configuration.  Since 1γ =  the coefficient nA  is still given by Eq. (26) 
but with 0 0k a  replaced by /ka aω ρ µ=  where 0 / Jρ ρ=  and 2

0 1a a λ=  are material density 
and radius of cavity in the equilibrium configuration, respectively.  It can be seen that for the same 
frequency of the incident waves, the dynamic stress concentration factor ( )

0 3 max/ is sθ  in pre-stress me-
dia is different with of linear isotropic case. 

Example 1:  Figure 2 shows the geometry of this example when the material is equibiaxially de-
formed in 1 2( )x x -plane (i.e., 1 2λ λ λ= = ), the internal pressure 0 02 (1 ) /p Jµ λ= −  is applied inside 
the cavity.  The internal pressure is necessary since homogeneous stretches are assumed.  The inci-
dent wave is assumed to propagate in the 1x -direction with non-dimensional frequency 

2
0 0 0/ .aω ω ρ µ=   The principal stretches are varying as 0.1, 0.5, 1.0λ =  and 3 0.5,1.0, 2.0.λ =  

The non-dimensional phase speed of the SH-wave 0 0/c µρ µ ρ=  and non-dimensional internal 
pressure 0 0/p p µ=  which depend on the values of principal stretches are shown in Fig. 3, while the 
dynamic stress concentration factors are shown in Fig. 4.  

 
 
 
 
 
 
 
 
 
 
It can be seen in Fig. 3 that for 3 1.0λ λ< <  which simulates the pre-stressed earth when the 

1 2( )x x -plane is parallel to the horizontal ground surface, the speed of SH-waves is slower than that of 
the non pre-stressed material i.e., 1.0,c <  while the surrounding pressure 0p > . 

Since the 1 3( )x x -plane is a plane of symmetry ( )
0 3 max

is sθ  is plotted for θ≤ ≤o o0 180 .  It 
should be note that the maximum static stress concentration factor in the linear isotropic case is 2.0 at 
θ = o90  (pg. 133, Pao and Mow, 1973).  In this example when 0.1ω =  the maximum value of 

( )
0 3 max

is sθ  is slightly greater than 2.0 and for the higher frequencies ( 1,2ω = ) the maximum values 
of ( )

0 3 max
is sθ  are lower than 2.0.  Therefore, the low frequency wave is an important consideration 

in the study of dynamic stress concentrations in pre-stress media as well as in linear elastic material.  
The effect of pre-stress on the distribution of ( )

0 3 max
is sθ  is more for high frequency and less for the 

low frequency waves. 

Figure 2.  Geometry of Example 1. Figure 3.  Contour plot of non-dimensional frequency 
c  and pressure p . 
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Example 2:  The Varga material is equibiaxially deformed in the 1 3( )x x -plane with the principal 
stretches 1 3 0.9λ λ λ= = =  and 2 0.7,λ =  where the internal static traction 0 0( ) 3.527θ µ=t  

2[(3cos θ +  2sin ) rθ e sin 2 ]θθ− e  is applied along the inner surface of the cavity since uniform 
stretches are assumed.  The incident SH-wave has an incident angle o45α =  (see Fig. 1) and 
non-dimensional frequency 2 / 0.5.aω ρ µ =  Using the method presented in Sec. 2 with max 20n = , 
the coefficients ,nA  0, 1, 2,..., 20n = ± ± ±  are numerically obtained.  The real and imaginary parts 
of the amplitude of the displacement and shear stresses along the surface of cavity and the distribution 
of dynamic stress concentration are plotted in Figs. 5-8. 

  
 
 
 
 
 
 
 
 

Figure 4.  Dynamic stress concentration factor ( )
0 3 max

is sθ of Example 1. 

Figure 6.  Non-dimensional shear stress ( )
0 3 max| |i

rs s  

along the surface of cavity. 

Figure 5.  Non-dimensional displacement 3 0/u U  

along the surface of cavity. 
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Figures 5 and 7 can be used to calculate the displacement and shear stresses at any time in the pe-
riod of vibration, while Fig. 6 shows that the results agree with the boundary condition at the surface 
of the cavity.  It is seen from Fig. 8 that the position of maximum stress concentration factor is at 
θ = o110.1  with ( )

0 3 max 1.939,is sθ =  and the another local maximum is at θ = o297.3  with 
( )

0 3 max 1.810is sθ =  and the distribution of ( )
0 3 max

is sθ  is not symmetric with respect to any plane or 
axis for this example. 
 
 
4.  CONCLUSIONS 
 

Using the complex function method the scattering of plane SH-waves from a circular cylindrical 
cavity in a pre-stressed elastic medium is analyzed.  The effect of pre-stress on the speed of plane 
SH-waves and the dynamic stress concentration factor can be clearly seen from the numerical results.    
Low frequency waves will have a higher stress concentration than the high frequency waves.  The 
distribution of stress concentration factor for pre-stressed media is not always symmetric, except for 
the in-plane equibiaxially deformed case.  Scattering problems for non-circular cavities and inclu-
sions in pre-stressed elastic unbounded media or in a half-space and the scattering of in-plane waves 
(P and SV waves) should also be studied. 
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