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Abstract: The statistics for extreme values of non-stationary processes are critical to
designing structures in some engineering fields, such as earthquake engineering, coastal
engineering, wind engineering, and so on. However, it is not easy to estimate the extreme
values of non-stationary processes whose stochastic properties depend on time, because
we have to deal with the i.n.n.i.d. (independent not necessarily identically distributed)
random variables to solve problems of this type. Thus, we will discuss a probabilistic dis-
tribution for the extreme values of non-stationary Gaussian white noise as the simplest and
most primary problem for i.n.n.i.d. random variables. Firstly, the closed form solutions
are derived for the extreme values of i.n.n.i.d. Gaussian variables with two different prop-
erties and the qualitative properties are determined. Next, we propose an approximate
representation of the distribution for the extreme values of i.n.n.i.d. random variables
using these obtained properties, and confirm the appropriateness of the result through
Monte Carlo simulations.

1. INTRODUCTION

The statistics for extreme values of non-stationary processes are critical to designing structures
in some engineering fields, such as earthquake engineering, coastal engineering, and so on. Thus,
many researchers have proposed various methods for this purpose. For example, Vanmarcke
(1972) has developed a method to estimate the extreme values of a given system’s response
to random excitation using the spectral moments in a frequency domain. Furthermore, this
method was extended by Kiureghian (1980).

While we may deal with this problem in time domain, most research on this type of problem
has been limited to stationary processes. Especially, in a case where a time series is stationary
Gaussian white noise with zero mean, we can directly apply the asymptotic representation for
the extreme values of i.i.d. (independent identically distributed) Gaussian variables. Thus, the
closed form solutions are easily obtained. This asymptotic representation of extreme values
was introduced to the engineering fields by Gumbel and most classic and basic formulation as
known as Gumbel’s distribution (Gumbel 1958, Galambos 1978).

However, it is not easy to estimate the extreme values of non-stationary processes whose
stochastic properties depend on time, because we have to deal with the i.n.n.i.d. (independent
not necessarily identically distributed) random variables in a case of the simplest problem such
as white noise. Although general representations for this type of problems can be obtained
(Reise 1989, Ahsanullah and Nevzorov 2001), it is difficult to derive the closed form or asymp-
totic solutions for any specific distributions such as Gaussian distribution, etc. If such solutions
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Figure 1 Schematic diagram to show the relationship between i.n.n.i.d. and i.i.d. Gaussian variables
and concept to derive the statistics of extreme values of non-stationary Gaussian white noise.

are derived, their representations will be complicated and it is not suitable to apply them to
the problems in the engineering fields.

The asymptotic representation of extreme values for i.i.d. random variable were derived on
the basis of the ingenious ideas. As following this way, it is important to find an approximate
representation for the extreme values of i.n.n.i.d. random variables using simple formulations.
Unfortunately, nobody can propose appropriate representations for this type of problems, even
though the problem is described for i.n.n.i.d. Gaussian variables.

Therefore, we will discuss a probabilistic distribution for the extreme values of non-stationary
Gaussian white noise as the simplest and most primary problem: the extreme values of i.n.n.i.d.
Gaussian are treated. Furthermore, we will limit the property of non-stationarity to the simple
case keeping the application to the earthquake ground motion in mind: specifically, we will deal
with the discrete white noise whose mean is zero, and standard deviation depend on time. The
standard deviation has one peak and predominates the peak value over the time. Hereafter, we
call “white noise” instead of the “discrete white noise” for the simplicity.

2. PROBLEM SETTING

We will deal with the asymptotic distribution, FY (y) for maximum value of i.n.n.i.d. Gaussian
variables Xi (i = 1, 2, . . .), as the simplest non-stationary process: that is,

Xi ≡ X(ti) = η(ti) · W (ti) (1)

where, ti stands for i-th discrete time, W (ti) for Gaussian white noise with zero mean and unit
variance, and η(ti) for standard deviation which depends on time and varies smoothly with one
extreme peak and η(t; t ≤ 0) = η(∞) = 0. The variations of η(ti) will be set much smaller than
the time increments ∆t. It is noted that η(ti) will play the role of a kind of envelop function of
X(ti).

Generally speaking, the order statistics of i.n.n.i.d. random variables can be represented by
using that of i.i.d. random variables because of the Guilbaud’s theory (Reiss 1989). However,
this theory does not give any information how we can find the appropriate i.i.d. random
variable corresponding with i.n.n.i.d. random variables with a specific probability distribution
of Xi. As shown as question mark, ?© in Figure 1, although the asymptotic distribution should



be replaced by one of i.i.d. random variables in a case where the function η(t), which is the
probabilistic characteristics of i.n.n.i.d. random variable Xi, is given, there is no way to find
parameters for the corresponding i.i.d. random variables.

To find the appropriate parameters for i.i.d. random variables are easier than to derive
directly any asymptotic representation for the extreme values of i.n.n.i.d. random variables,
because the asymptotic representation are already obtained for the extreme values for i.i.d.
random variables.

From the above discussion, we will consider the approximate representations for the maxi-
mum values of non-stationary Gaussian white noise following the thick arrows in Figure 1. In
this procedure, most significant problem is to represent the relationships between the param-
eters of i.i.d. and i.n.n.i.d. random variables. Thus, we will concentrate our concern into this
problem, that is, to find the relationships as shown as ?© in Figure 1.

Firstly, it will be confirmed that we can replace i.n.n.i.d. variables with i.i.d. variables.
Then, we will derive analytically the asymptotic representation for the maximum values of
i.n.n.i.d. Gaussian variables with two distributions: we consider a case where η(ti) takes only
two values. From this analysis, we discuss the relationships between the parameters for two
types of variables and determine the qualitative properties to examine the possibility of the
approximate representation for maximum values of i.n.n.i.d. variables. Finally, we will propose
an approximate representation for our problem using the properties obtained from the above
discussion, and confirm the appropriateness of the result through Monte Carlo simulations.

3. DISTRIBUTION FOR EXTREME VALUES OF GAUSSIAN VARIABLES
WITH TWO DIFFERENT PROPERTIES

Let us consider Xi (i = 1, 2, . . . , n1 + n2) which consists of nj independent Gaussian variables,
Xjk with zero mean and variance σ2

j (j = 1, 2, k = 1, 2, . . . , nj): that is, Xjk is N(0, σ2
j )

and Xi should be X1k or X2k. Since Xi (i = 1, 2, . . . , n1 + n2) are independent mutually,
we can renumber Xi without loss of generality. Thus, let us set X1k (k = 1, . . . , n1) for Xi

(i = 1, . . . , n1) and X2k (k = 1, . . . , n2) for Xi (i = n1 + 1, . . . , n2).
Then, the probability distributions for maximum value Yj of Xjk (j = 1, 2) can be approx-

imately written for large nj as follows (Ahsanullah and Nevzorov 2001):

FYj
(y) = P (Xjk < y) ≈ exp [− exp[−αj(y − uj)]] , (2)

where P (A) denotes the probability of A, and

αj =
√

2 lnnj/σj (3a)

uj =

{√
2 lnnj − ln(ln nj) + ln(4π)

2
√

2 ln nj

}
σj . (3b)

Thus, the probability distribution for maximum values of Xi is represented as

FY (y) = P (Xi < y) =

2∏
j=1

P (Xjk < y) =

2∏
j=1

FYj
(y) ≈ exp

[
−

2∑
j=1

exp[−αj(y − uj)]

]
. (4)

Eq.(4) gives an approximate representation from the meaning of the asymptotic distribution
for a special case of i.n.n.i.d. random variable with large nj.
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Figure 2 An example of distribution for extreme
values of Gaussian white noise (n1 = n2 = 500,
σ1 = 1.0, σ2 = 1.05).
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Figure 3 An example of distribution for extreme
values of Gaussian white noise (n1 = n2 = 500,
σ1 = 1.0, σ2 = 1.25).

According to Guilbaud’s theory, Eq.(4) can be represented by the asymptotic distribution
for the maximum values of i.i.d. random variable: namely, Eq.(4) can be replaced by

FY (y) ≈ exp[− exp[−α(y − u)]]. (5)

As pointed out above, this theory does not give any information about the relationships between
α and u of Eq.(5), and αj and uj (j = 1, 2) of Eq.(2). Thus, we will discuss how α and u can
be represented by αj and uj (j = 1, 2) in this section.

Calculating the Eq.(4) with various values of the parameters nj and σj (j = 1, 2) of Eqs.(3a)
and (3b), we obtained the following relationships as σ1 ≈ σ2 and n1 ≈ n2 by trial and error:

α ≈
√

2 ln n/σ (6a)

u ≈
{√

2 lnn − ln(ln n) + ln(4π)

2
√

2 lnn

}
σ, (6b)

where

n =
2∑

j=1

nj (7a)

σ =

2∑
j=1

njσj

n
. (7b)

Although this is not the mathematical consequence, these results may be expected instinctively
under the above condition of σj and nj . σ of Eq.(7b) is given by the weighted mean of σj with
respect to nj. Considering the general characteristics of the standard deviation, σ2 should be
represented by the weighted mean of σ2

j (j = 1, 2) with respect to n2
j , though Eq.(7b) gives

good approximation as σ1 ≈ σ2 as n1 ≈ n2.
In other cases such as σ� � σj (�, j = 1, 2, � �= j) and n1 ≈ n2, α ≈ αj and u ≈ uj can be

applied. This means that the distribution function, FY (y) for the maximum values of i.n.n.i.d.
Gaussian variables, Xi is approximately rewritten by the distribution for the maximum values
of i.i.d. Gaussian variables with larger values of σj . Furthermore, in a case where σj is more
than only 1.1 to 1.2 times of σ�, the effect from the maximum values of Xi with σ� is negligible.
Thus, it is enough to treat the two cases of σ1 ≈ σ2 and σ� � σj as n1 ≈ n2.

Figures 2 and 3 show the numerical examples of the approximation of probability distri-
bution for maximum value, Y , of Xi as n1 = n2. In this figures, the histogram of Y , which
are obtained from the Monte Carlo simulation of 10000 times, is also shown. Figure 2 gives
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the result as σ1 ≈ σ2 and it is observed that the shapes of Eq.(4) and Eq.(5) obtained by
using Eqs.(6a) and (6b) coincide. On the other hand, Figure 3 shows the case for σ1 � σ2. In
this case, Eq.(4) coincides with the distribution for the maximum value of Xi with σ2: FY2(y).
However, the distribution estimated by the weighted mean of σj (j = 1, 2) fails to represent the
histogram.

From the above numerical calculations, we can confirm the Guilbaud’s theory: the prob-
ability distribution for maximum values of i.n.n.i.d Gaussian variables are replaced by one of
i.i.d. Gaussian distribution. Furthermore, the results give an instructions how to determine
the values of α and u of Eq.(5).

As a result, we can conclude the method to determine the parameters for substitute i.i.d.
distribution as follows. In a case of σ1 ≈ σ2, we can choose the value of σ to satisfy the equation

σ

(
2∑

j=1

nj

)
=

2∑
j=1

(njσj) . (8)

This means that the area obtained by σ and n =
∑2

j=1 nj should be same as the total area from

nj and σj (j = 1, 2) as shown in Figure 4. On the other hand, in a case of σ� � σj (�, j = 1, 2;
� �= j), we can use the probability distribution for the maximum value, Yj, of i.i.d. Gaussian
variable with N(0, σ2

j ).

4. APPROXIMATE DISTRIBUTION FOR EXTREME VALUES OF
NON-STATIONARY GAUSSIAN WHITE NOISE

We discussed the relationships between the parameters of i.n.n.i.d. and i.i.d. Gaussian vari-
able for a special case in the previous section. Then, we will apply the obtained properties to
approximate the probabilistic characteristics for maximum values of Eq.(1). Since we assume
the standard deviation, η(t) varies smoothly over the time as shown in Figure 5, we can ap-
proximate η(ti) ≈ η(ti+1) at tiと ti+1 = ti + ∆t, respectively, where ∆t stands for the small
increment of the discrete time. This suggests the possibility that the probability distribution
for the maximum value, FY (y), of Xi of Eq.(1) will be replaced with the asymptotic distribution
for an i.i.d. Gaussian variable of Eq.(5) with parameters given by Eqs.(6a) and (6b).

On the basis of this daring (and mathematically baseless) assumption, we will determine
the parameters for an i.i.d. Gaussian variable substituting the i.n.n.i.d. Gaussian variable. The
parameters to determine are σ and n of Eqs.(6a) and (6b). Since we considered the area formed



by the number of variables and standard deviation to determine σ as shown in Figure 4, the
same concept will be introduced as shown in Figure 5. The remaining part of this section is
devoted to explain the procedure to obtain the probability distribution approximately using
the Figure 5.

Let us consider η(t) takes maximum value η(c) at t = c. Then, introducing a real number
r (0 < r < 1), we will determine parameters a and b which satisfy r · η(c) = η(a) = η(b),
where a < c < b. The area of η(t), Sr, are obtained as a function of r at [a, b]. To replace
the probability distribution for the maximum value of i.n.n.i.d. Gaussian variable with one of
i.i.d. Gaussian variable, we will consider a Gaussian variable with constant standard deviation
at [a, b]. For the standard deviation of this i.i.d. Gaussian variable, we adopt the height σ
of the rectangle whose area and length of the base are Sr and b − a, respectively. Applying
the obtained σ and n = (b − a)/∆t to Eqs.(6a) and (6b) and using Eq.(5), we can obtain the
approximate probability distribution for the maximum values of i.n.n.i.d. Gaussian variable
Xi.

The above procedure is rewritten mathematically as follows: the parameters a and b are
determined by

a = sup
t<c

{t; η(t) = rη(c)} (9a)

b = inf
t>c

{t; η(t) = rη(c)}, (9b)

where η(a) = η(b). Then, the area surrounded by η(t) at [a, b] is

Sr =

∫ b

a

η(t)dt. (10)

n is obtained from n = (b − a)/∆t, and σ is determined by

σ =
Sr

n
. (11)

Substituting n and σ for Eq.(5) derives the approximate probability distribution for the maxi-
mum value of Xi.

In this procedure, we did not mention the value of r. Generally speaking, since any function
can be used for η(t), we cannot examine the sensitivity of Eq.(5) with respect to r, exhaustively.
We can say, in our calculations, Eq.(5) is not sensitive toward r. However, in a case where
r is too small, the approximation of η(ti) ≈ η(ti+1) is not assured. Thus, we can use the
value of 0.8 to 0.9 as r. Since this suggests that the optimal value of r may depend on the
time increment, ∆t, ∆t should be small with respect to the variance of η(t) to satisfy the
approximation η(ti) ≈ η(ti+1).

5. A NUMERICAL EXAMPLE

To confirm the availability of the proposed method, we carried out a simple numerical calcu-
lation using the Monte Carlo simulation. The pseudo-random numbers are generated by the
Mersenne Twister (Matsumoto and Nishimura 1998) and the Fortran code based on this method
(Matsumoto 2002) are used. Since the generated random values follow the uniform distribu-
tion, they are transformed to Gaussian distribution (Evans et al. 1993). In this calculation,
∆t = 0.01 are used as small value regarding to the variance of η(t).
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Figure 6 An example of the approximate distribution for extreme values of non-stationary Gaussian
white noise. The upper panel shows a sample process and η(t) = 1√

2π50
exp

[
−1

2

(
t−300
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)2]. The ap-
proximate distributions for r = 0.95, 0.9, and 0.8 are compared with the result of numerical simulation
in the lower panel.

Table 1 Comparison of the parameters for Gumbel’s distribution for Eq.(5)

Numerical r = 0.95 r = 0.9 r = 0.8
u 0.02733 0.02699 0.027270 0.02678
α 530.74 512.65 532.90 569.92

Figure 6 shows an example of the probability distribution for maximum value of Xi with
η(t) which is Gaussian type function. The upper panel of this figure compares a realization with
the shape of η(t). In the lower panel, the estimated distribution are shown with the histogram
obtained from Monte Carlo simulation of 10000 times. The lines show the results from the
different value of r of Eqs.(9a) and (9b): 0.8, 0.9, 0.95. It is noted that these lines approxi-
mate the histogram well. This means that the proposed method gives good approximation to
represent the probability distribution for maximum value of i.n.n.i.d. Gaussian value.

Furthermore, to examine the accuracy of the approximation, the values of parameters α
and u of Eq.(5) are listed in Table 1. From this, it is observed that the statistical parameters
are consistent values with the results from Monte Carlo simulation. This means that the we
can set the value of r roughly, because the approximation is not so sensitive to r.

6. CONCLUSIONS

We have analytically derived the asymptotic representation for maximum values of Gaussian
variable with two different properties and found qualitative properties. Using these properties,
an approximate representation were proposed for maximum values of non-stationary Gaussian
white noise and the appropriateness was also confirmed through the numerical simulation.
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